求函数y=x²-3x+3/x-2﹙x>2﹚的最小值﹙用均值定理﹚?
1个回答
展开全部
下面有括号?
解y=(x²-3x+3)/(x-2)
=[x(x-2)-x+3]/(x-2)
=[x(x-2)-(x-2)+1]/(x-2)
=x(x-2)/(x-2)-(x-2)/(x-2)+1/(x-2)
=(x-1)+1/(x-2)
=(x-2)+1/(x-2)+1
因为x>2,x-2>0
所以(x-2)+1/(x-2)≥2,
即 y=(x-2)+1/(x-2)+1有最小值 2+1=3,5,
解y=(x²-3x+3)/(x-2)
=[x(x-2)-x+3]/(x-2)
=[x(x-2)-(x-2)+1]/(x-2)
=x(x-2)/(x-2)-(x-2)/(x-2)+1/(x-2)
=(x-1)+1/(x-2)
=(x-2)+1/(x-2)+1
因为x>2,x-2>0
所以(x-2)+1/(x-2)≥2,
即 y=(x-2)+1/(x-2)+1有最小值 2+1=3,5,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询