怎么做这道题⊙▽⊙数学谢谢
展开全部
a1=λa1-1/(λ+1),得a1=1/[(1+λ)(λ-1)]
当n>=2时
an=Sn-S(n-1)=λ(an-a(n-1))-1/(λ+1)
(λ-1)an=λa(n-1)+1/(λ+1)
an=λ/(λ-1)*a(n-1)+1/[(λ+1)(λ-1)]
由于an单调增,所以an>=a(n-1),即λ/(λ-1)*a(n-1)+1/[(λ+1)(λ-1)]>=a(n-1)
1/(λ-1)*a(n-1)>=1/[(1+λ)(1-λ)]
1)若λ>1,则a(n-1)>=-1/(1+λ),由a1=1/[(1+λ)(λ-1)],得1/[(1+λ)(λ-1)]>=-1/(1+λ),得λ>=0.故此时λ>1
2)若λ<1,则a(n-1)<=-1/(1+λ),由a1=1/[(1+λ)(λ-1)],得1/[(1+λ)(λ-1)]<=-1/(1+λ),得λ>=0或λ<-1.故此时λ<-1
综上所述,λ<-1或λ>1.
当n>=2时
an=Sn-S(n-1)=λ(an-a(n-1))-1/(λ+1)
(λ-1)an=λa(n-1)+1/(λ+1)
an=λ/(λ-1)*a(n-1)+1/[(λ+1)(λ-1)]
由于an单调增,所以an>=a(n-1),即λ/(λ-1)*a(n-1)+1/[(λ+1)(λ-1)]>=a(n-1)
1/(λ-1)*a(n-1)>=1/[(1+λ)(1-λ)]
1)若λ>1,则a(n-1)>=-1/(1+λ),由a1=1/[(1+λ)(λ-1)],得1/[(1+λ)(λ-1)]>=-1/(1+λ),得λ>=0.故此时λ>1
2)若λ<1,则a(n-1)<=-1/(1+λ),由a1=1/[(1+λ)(λ-1)],得1/[(1+λ)(λ-1)]<=-1/(1+λ),得λ>=0或λ<-1.故此时λ<-1
综上所述,λ<-1或λ>1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询