42的全部因数中质数有
42的全部因数中质数有:2、3、7。
质数:
质数(Prime number,又称素数),指在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数(也可定义为只有1与该数本身两个正因数的数)。
合数:
大于1的自然数若不是素数,则称之为合数(也称为合成数)。算术基本定理确立了素数于数论里的核心地位:任何大于1的整数均可被表示成一串唯一素数之乘积。
在数字1至6间,数字2、3与5为素数,1、4与6则不是素数。1不是素数,其理由见下文。2是素数,因为只有1与2可整除该数。接下来,3亦为素数,因为1与3可整除3,3除以2会余1。因此,3为素数。不过,4是合数,因为2是另一个(除1与4外)可整除4的数。
质数历史:
在古埃及人的幸存纪录中,有迹象显示他们对素数已有部分认识:例如,在莱因德数学纸草书中的古埃及分数展开时,对素数与对合数有着完全不同的类型。不过,对素数有过具体研究的最早幸存纪录来自古希腊。公元前300年左右的《几何原本》包含与素数有关的重要定理,如有无限多个素数,以及算术基本定理。
希腊之后,到17世纪之前,素数的研究少有进展。1640年,皮埃尔·德·费马叙述了费马小定理(之后才被莱布尼茨与欧拉证明)。费马亦推测,所有具22n + 1形式的数均为素数(称之为费马数),并验证至n = 4(即216 + 1)不过,后来由欧拉发现,下一个费马数232 + 1即为合数,且实际上其他已知的费马数都不是素数。