高等数学,求定积分,第8条
3个回答
展开全部
(8) I = (1/2) ∫<1, 2> log<2>x dx^2
= (1/2)[x^2log<2>x]<1, 2> - (1/2) ∫<1, 2>[x^2/(xln2)] dx
= 2 - (1/2) ∫<1, 2>[x/(ln2)] dx
= 2 - [1/(4ln2)] [x^2]<1, 2> = 2 - 3/(4ln2)
= (1/2)[x^2log<2>x]<1, 2> - (1/2) ∫<1, 2>[x^2/(xln2)] dx
= 2 - (1/2) ∫<1, 2>[x/(ln2)] dx
= 2 - [1/(4ln2)] [x^2]<1, 2> = 2 - 3/(4ln2)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询