4个回答
展开全部
比较法
比较法是证明不等式的最基本方法,具体有"作差"比较和"作商"比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)
例1已知a+b≥0,求证:a3+b3≥a2b+ab2
分析:由题目观察知用"作差"比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。
∵(a3+b3)(a2b+ab2)
=a2(a-b)-b2(a-b)
=(a-b)(a2-b2)
证明: =(a-b)2(a+b)
又∵(a-b)2≥0a+b≥0
∴(a-b)2(a+b)≥0
即a3+b3≥a2b+ab2
例2 设a、b∈R+,且a≠b,求证:aabb>abba
分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同"1"比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小
证明:由a、b的对称性,不妨解a>b>0则
aabbabba=aa-bbb-a=(ab)a-b
∵ab0,∴ab1,a-b0
∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba
练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)
基本不等式法
利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及 变形有:
(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)
(2)若a、b∈R+,则a+b≥ 2ab (当且仅当a=b时,取等号)
(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)
例3 若a、b∈R, |a|≤1,|b|≤1则a1-b2+b1-a2≤1
分析:通过观察可直接套用: xy≤x2+y22
证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1
∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立
练习2:若 ab0,证明a+1(a-b)b≥3
综合法
综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。
例4,设 a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252
证明:∵ a0,b0,a+b=1
∴ab≤14或1ab≥4
左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2
=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252
练习3:已知a、b、c为正数,n是正整数,且f (n)=1gan+bn+cn3
求证:2f(n)≤f(2n)
分析法
从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。
例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab
分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。
要证c-c2-ab<a<c+c2-ab
只需证-c2-ab<a-c<c2-ab
证明: 即证 |a-c|<c2-ab
即证 (a-c)2<c2-ab
即证 a2-2ac<-ab
∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知
∴ 不等式成立
练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)2
放缩法
放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。
例6:已知a、b、c、d都是正数
求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2
分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。
证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=1
又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d
∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2
综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2
练习5:已知:a<2,求证:loga(a+1)<1
6换元法
换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。
(1)三角换元:
是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。
例7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0<A<1
证明: ∵x,y∈R+, 且x-y=1,x=secθ , y=tanθ ,(0<θ<xy )
∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ
=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ
=sinθ
∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1
复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤3
(2)比值换元:
对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。
例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥4314
证明:设x-1=y+12=z-23=k
于是x=k+1,y=zk-1,z=3k+2
把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2
=14(k+514)2+4314≥4314
反证法
有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是"至少"、"唯一"或含有否定词的命题,适宜用反证法。
例9:已知p3+q3=2,求证:p+q≤2
分析:本题已知为p、q的三次 ,而结论中只有一次 ,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。
证明:解设p+q>2,那么p>2-q
∴p3>(2-q)3=8-12q+6q2-q3
将p3+q3 =2,代入得 6q2-12q+6<0
即6(q-1)2<0 由此得出矛盾 ∴p+q≤2
练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.
求证:a>0,b>0,c>0
数学归纳法
与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。
例10:设n∈N,且n>1,求证: (1+13)(1+15)…(1+12n-1)>2n+12
分析:观察求证式与n有关,可采用数学归纳法
证明:(1)当n=2时,左= 43,右=52
∵43>52∴不等式成立
(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12
那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①
要证①式左边> 2k+32,只要证2k+12·
2k+22k+1>2k+32②
对于②〈二〉2k+2> 2k+1·2k+3
〈二〉(2k+2)2> (2k+1)(2k+3)
〈二〉4k2+8k+4> 4k2+8k+3
〈二〉4>3 ③
∵③成立 ∴②成立,即当n=k+1时,原不等式成立
由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立
练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n> 1324
构造法
根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。
1构造函数法
例11:证明不等式:x1-2x <x2 (x≠0)
证明:设f(x)= x1-2x- x2 (x≠0)
∵f (-x)
=-x1-2-x+x2x-2x2x-1+x2
=x1-2x- [1-(1-2x)]+x2=x1-2x-x+x2
=f(x)
∴f(x)的图像表示y轴对称
∵当x>0时,1-2x<0 ,故f(x)<0
∴当x<0时,据图像的对称性知f(x)<0
∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0)
练习9:已知a>b,2b>a+c,求证:b- b2-ab<a<b+b2-ab
2构造图形法
例12:若f(x)=1+x2 ,a≠b,则|f(x)-f(b)|< |a-b|
分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2
于设A(1,a),B(1,b)则0A= 1+a2
比较法是证明不等式的最基本方法,具体有"作差"比较和"作商"比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)
例1已知a+b≥0,求证:a3+b3≥a2b+ab2
分析:由题目观察知用"作差"比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。
∵(a3+b3)(a2b+ab2)
=a2(a-b)-b2(a-b)
=(a-b)(a2-b2)
证明: =(a-b)2(a+b)
又∵(a-b)2≥0a+b≥0
∴(a-b)2(a+b)≥0
即a3+b3≥a2b+ab2
例2 设a、b∈R+,且a≠b,求证:aabb>abba
分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同"1"比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小
证明:由a、b的对称性,不妨解a>b>0则
aabbabba=aa-bbb-a=(ab)a-b
∵ab0,∴ab1,a-b0
∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba
练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)
基本不等式法
利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及 变形有:
(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)
(2)若a、b∈R+,则a+b≥ 2ab (当且仅当a=b时,取等号)
(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)
例3 若a、b∈R, |a|≤1,|b|≤1则a1-b2+b1-a2≤1
分析:通过观察可直接套用: xy≤x2+y22
证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1
∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立
练习2:若 ab0,证明a+1(a-b)b≥3
综合法
综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。
例4,设 a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252
证明:∵ a0,b0,a+b=1
∴ab≤14或1ab≥4
左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2
=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252
练习3:已知a、b、c为正数,n是正整数,且f (n)=1gan+bn+cn3
求证:2f(n)≤f(2n)
分析法
从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。
例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab
分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。
要证c-c2-ab<a<c+c2-ab
只需证-c2-ab<a-c<c2-ab
证明: 即证 |a-c|<c2-ab
即证 (a-c)2<c2-ab
即证 a2-2ac<-ab
∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知
∴ 不等式成立
练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)2
放缩法
放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。
例6:已知a、b、c、d都是正数
求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2
分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。
证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=1
又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d
∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2
综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2
练习5:已知:a<2,求证:loga(a+1)<1
6换元法
换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。
(1)三角换元:
是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。
例7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0<A<1
证明: ∵x,y∈R+, 且x-y=1,x=secθ , y=tanθ ,(0<θ<xy )
∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ
=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ
=sinθ
∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1
复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤3
(2)比值换元:
对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。
例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥4314
证明:设x-1=y+12=z-23=k
于是x=k+1,y=zk-1,z=3k+2
把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2
=14(k+514)2+4314≥4314
反证法
有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是"至少"、"唯一"或含有否定词的命题,适宜用反证法。
例9:已知p3+q3=2,求证:p+q≤2
分析:本题已知为p、q的三次 ,而结论中只有一次 ,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。
证明:解设p+q>2,那么p>2-q
∴p3>(2-q)3=8-12q+6q2-q3
将p3+q3 =2,代入得 6q2-12q+6<0
即6(q-1)2<0 由此得出矛盾 ∴p+q≤2
练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.
求证:a>0,b>0,c>0
数学归纳法
与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。
例10:设n∈N,且n>1,求证: (1+13)(1+15)…(1+12n-1)>2n+12
分析:观察求证式与n有关,可采用数学归纳法
证明:(1)当n=2时,左= 43,右=52
∵43>52∴不等式成立
(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12
那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①
要证①式左边> 2k+32,只要证2k+12·
2k+22k+1>2k+32②
对于②〈二〉2k+2> 2k+1·2k+3
〈二〉(2k+2)2> (2k+1)(2k+3)
〈二〉4k2+8k+4> 4k2+8k+3
〈二〉4>3 ③
∵③成立 ∴②成立,即当n=k+1时,原不等式成立
由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立
练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n> 1324
构造法
根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。
1构造函数法
例11:证明不等式:x1-2x <x2 (x≠0)
证明:设f(x)= x1-2x- x2 (x≠0)
∵f (-x)
=-x1-2-x+x2x-2x2x-1+x2
=x1-2x- [1-(1-2x)]+x2=x1-2x-x+x2
=f(x)
∴f(x)的图像表示y轴对称
∵当x>0时,1-2x<0 ,故f(x)<0
∴当x<0时,据图像的对称性知f(x)<0
∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0)
练习9:已知a>b,2b>a+c,求证:b- b2-ab<a<b+b2-ab
2构造图形法
例12:若f(x)=1+x2 ,a≠b,则|f(x)-f(b)|< |a-b|
分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2
于设A(1,a),B(1,b)则0A= 1+a2
展开全部
不等式的证明方法
(1)比较法:作差比较: .
作差比较的步骤:
①作差:对要比较大小的两个数(或式)作差.
②变形:对差进行因式分解或配方成几个数(或式)的完全平方和.
③判断差的符号:结合变形的结果及题设条件判断差的符号.
注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小.
(2)综合法:由因导果.
(3)分析法:执果索因.基本步骤:要证……只需证……,只需证……
①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件.
②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达.
(4)反证法:正难则反.
(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的.
放缩法的方法有:
①添加或舍去一些项,如: ; ;
②将分子或分母放大(或缩小);
③利用基本不等式,如: ;;
(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.
如:已知 ,可设 ;
已知 ,可设 ( );
已知 ,可设 ;
已知 ,可设 ;
(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;
证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.
⑻数学归纳法法:数学归纳法法证明不等式在数学归纳法中专门研究.
(1)比较法:作差比较: .
作差比较的步骤:
①作差:对要比较大小的两个数(或式)作差.
②变形:对差进行因式分解或配方成几个数(或式)的完全平方和.
③判断差的符号:结合变形的结果及题设条件判断差的符号.
注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小.
(2)综合法:由因导果.
(3)分析法:执果索因.基本步骤:要证……只需证……,只需证……
①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件.
②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达.
(4)反证法:正难则反.
(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的.
放缩法的方法有:
①添加或舍去一些项,如: ; ;
②将分子或分母放大(或缩小);
③利用基本不等式,如: ;;
(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.
如:已知 ,可设 ;
已知 ,可设 ( );
已知 ,可设 ;
已知 ,可设 ;
(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;
证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.
⑻数学归纳法法:数学归纳法法证明不等式在数学归纳法中专门研究.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
g3.1039 不等式证明方法(二)
一、知识回顾
1、反证法:从否定结论出发,经过逻辑推理,导出矛盾,从而肯定原结论的正确;
2、放缩法:欲证 ,可通过适当放大或缩小,借助一个或多个中间量使得 (或 ),常用的放缩方式:
舍去或加上一些项;
; ;
3、换元法:三角换元、代数换元;
4、判别式法
二、基本训练:
1、实数 、 、 不全为零的条件为( )
、 、 全不为零 、 、 中至多只有一个为零
、 、 只有一个为零 、 、 中至少有一个不为零
2、已知 , ,则有( )
3、为已知 ,则 的取值范围是 。
4、设 , ,则 、 大小关系为 。
5、 实数 ,则 的取值范围是 。
三、例题分析:
例1、x>0,y>0,求证:
例2、函数 ,求证:
例3、 (三角换元法)
例4、求证: (判别式法)
例5、若a,b,c都是小于1的正数,求证: .
(反证法)
例6、求证: (放缩法)
例7、设二次函数 ,若函数 的图象与直线 和 均无公共点。
(1) 求证:
(2) 求证:对于一切实数 恒有
四、课堂小结:
1、凡是“至少”、“唯一”或含有否定词的命题适宜用反证法.
2、换元法(主要指三角代换法)多用于条件不等式的证明,此法若运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化成简单的三角问题.
3、含有两上字母的不等式,若可化成一边为零,而另一边是关于某字母的二次式时,这时可考虑判别式法,并注意根的取值范围和题目的限制条件.
4、有些不等式若恰当地运用放缩法可以很快得证,放缩时要看准目标,做到有的放矢,注意放缩适度.
五、同步练习g3.1039 不等式证明方法(二)
1、若 且 ,则 的取值范围是( )
2、已知 ,则下列各式中成立的是( )
3、设,y∈R,且x +y =4,则 的最大值为( )
A) 2- B)2+2 C) -2 D)
4、若f(n)= -n,g(n)=n- ,φ(n)= ,则f(n),g(n),ф(n)的大小顺序为____________.
5、设a,b是两个实数,给出下列条件:①a+b>1; ②a+b=2;③a+b>2;④a +b >2;⑤ab>1,其中能推出:“a、b中至少有一个实数大于1”的条件是____________.
6、a、b、c∈R-,a≠b,求证:
7、a>b>c,求证:
(提示:换元法,令a-b=m∈R+,b-c=n∈R+)
8、若 ,求证:
9、已知 ,求证: 中至少有一个不少于 。
10、已知 、 、 是整数且 ,试证明:
(1) ;
(2) .
答案:DCB 4、g(n)>ф(n)> f(n) 5、③
一、知识回顾
1、反证法:从否定结论出发,经过逻辑推理,导出矛盾,从而肯定原结论的正确;
2、放缩法:欲证 ,可通过适当放大或缩小,借助一个或多个中间量使得 (或 ),常用的放缩方式:
舍去或加上一些项;
; ;
3、换元法:三角换元、代数换元;
4、判别式法
二、基本训练:
1、实数 、 、 不全为零的条件为( )
、 、 全不为零 、 、 中至多只有一个为零
、 、 只有一个为零 、 、 中至少有一个不为零
2、已知 , ,则有( )
3、为已知 ,则 的取值范围是 。
4、设 , ,则 、 大小关系为 。
5、 实数 ,则 的取值范围是 。
三、例题分析:
例1、x>0,y>0,求证:
例2、函数 ,求证:
例3、 (三角换元法)
例4、求证: (判别式法)
例5、若a,b,c都是小于1的正数,求证: .
(反证法)
例6、求证: (放缩法)
例7、设二次函数 ,若函数 的图象与直线 和 均无公共点。
(1) 求证:
(2) 求证:对于一切实数 恒有
四、课堂小结:
1、凡是“至少”、“唯一”或含有否定词的命题适宜用反证法.
2、换元法(主要指三角代换法)多用于条件不等式的证明,此法若运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化成简单的三角问题.
3、含有两上字母的不等式,若可化成一边为零,而另一边是关于某字母的二次式时,这时可考虑判别式法,并注意根的取值范围和题目的限制条件.
4、有些不等式若恰当地运用放缩法可以很快得证,放缩时要看准目标,做到有的放矢,注意放缩适度.
五、同步练习g3.1039 不等式证明方法(二)
1、若 且 ,则 的取值范围是( )
2、已知 ,则下列各式中成立的是( )
3、设,y∈R,且x +y =4,则 的最大值为( )
A) 2- B)2+2 C) -2 D)
4、若f(n)= -n,g(n)=n- ,φ(n)= ,则f(n),g(n),ф(n)的大小顺序为____________.
5、设a,b是两个实数,给出下列条件:①a+b>1; ②a+b=2;③a+b>2;④a +b >2;⑤ab>1,其中能推出:“a、b中至少有一个实数大于1”的条件是____________.
6、a、b、c∈R-,a≠b,求证:
7、a>b>c,求证:
(提示:换元法,令a-b=m∈R+,b-c=n∈R+)
8、若 ,求证:
9、已知 ,求证: 中至少有一个不少于 。
10、已知 、 、 是整数且 ,试证明:
(1) ;
(2) .
答案:DCB 4、g(n)>ф(n)> f(n) 5、③
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
最基本的就是作差比较,另外还有作商的。
此外还有用数学归纳法(如琴生不等式的一般形式)
放缩法,调整法(如的排序不等式),还有就是直接代公式。
此外还有用数学归纳法(如琴生不等式的一般形式)
放缩法,调整法(如的排序不等式),还有就是直接代公式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询