5个回答
展开全部
分析 这是一个二元对称式,二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解.
解 ∵x4+y4
=(x+y)4-4x3y-6x2y2-4xy2
=(x+y)4-4xy(x+y)2+2x2y2.
∴原式=(x+y)4-4xy(x+y)2+2x2y2+(x+y)4
=2(x+y)4-4xy(x+y)2+2x2y2
=2[(x+y)4-2xy(x+y)2+(xy)2]
=2[(x+y)2-xy]2-2(x2+y2+xy)2,
解 ∵x4+y4
=(x+y)4-4x3y-6x2y2-4xy2
=(x+y)4-4xy(x+y)2+2x2y2.
∴原式=(x+y)4-4xy(x+y)2+2x2y2+(x+y)4
=2(x+y)4-4xy(x+y)2+2x2y2
=2[(x+y)4-2xy(x+y)2+(xy)2]
=2[(x+y)2-xy]2-2(x2+y2+xy)2,
展开全部
x^4+y^4+(x+y)^4
=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2-2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2
=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2-2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2
参考资料: zhidao
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解答:解:x4+y4+(x+y)4-2,
=(x2+y2)2-2x2y2+(x2+2xy+y2)2-2,
=(x2+y2)2-2x2y2+(x2+y2)2+4xy(x2+y2)+4x2y2-2,
=2(x2+y2)2+2x2y2+4xy(x2+y2)-2,
=2[(x2+y2)2+x2y2+2xy(x2+y2)-1],
=2[(x2+xy+y2)2-1],
=2(x2+xy+y2-1)(x2+xy+y2+1).
故答案为:2(x2+xy+y2-1)(x2+xy+y2+1).
=(x2+y2)2-2x2y2+(x2+2xy+y2)2-2,
=(x2+y2)2-2x2y2+(x2+y2)2+4xy(x2+y2)+4x2y2-2,
=2(x2+y2)2+2x2y2+4xy(x2+y2)-2,
=2[(x2+y2)2+x2y2+2xy(x2+y2)-1],
=2[(x2+xy+y2)2-1],
=2(x2+xy+y2-1)(x2+xy+y2+1).
故答案为:2(x2+xy+y2-1)(x2+xy+y2+1).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(x+y)^4+x^4+y^4
=(x+y)^4+x^4+2x^2y^2+y^4-2x^2y^2
=(x+y)^4+(x^2+y^2)^2-2x^2y^2
=(x+y)^4+[(x^2+2xy+y^2)-2xy]^2-2x^2y^2
=(x+y)^4+[(x+y)^2-2xy]^2-2x^2y^2
=(x+y)^4+(x+y)^4-4xy(x+y)^2+4x^2y^2-2x^2y^2
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+x^2y^2]
=2[(x+y)^2-xy]^2
=2(x^2+2xy+y^2-xy)^2
=2(x^2+xy+y^2)^2
=(x+y)^4+x^4+2x^2y^2+y^4-2x^2y^2
=(x+y)^4+(x^2+y^2)^2-2x^2y^2
=(x+y)^4+[(x^2+2xy+y^2)-2xy]^2-2x^2y^2
=(x+y)^4+[(x+y)^2-2xy]^2-2x^2y^2
=(x+y)^4+(x+y)^4-4xy(x+y)^2+4x^2y^2-2x^2y^2
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+x^2y^2]
=2[(x+y)^2-xy]^2
=2(x^2+2xy+y^2-xy)^2
=2(x^2+xy+y^2)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x4+y4+(x+y)4-2=(x2+y2)2-2x2y2+(x+y)4-2
=[(x+y)2-2xy]2-2x2y2+(x+y)4-2
=(x+y)4-4xy(x+y)2+4x2y2-2x2y2+(x+y)4-2
=2(x+y)4-4xy(x+y)2+2x2y2-2
=2[(x+y)4-2xy(x+y)2+x2y2]-2
=2[(x+y)2-xy]2-2
=2[x2+y2+xy]2-2=2(x2+y2+xy+1)(x2+y2+xy-1)
=[(x+y)2-2xy]2-2x2y2+(x+y)4-2
=(x+y)4-4xy(x+y)2+4x2y2-2x2y2+(x+y)4-2
=2(x+y)4-4xy(x+y)2+2x2y2-2
=2[(x+y)4-2xy(x+y)2+x2y2]-2
=2[(x+y)2-xy]2-2
=2[x2+y2+xy]2-2=2(x2+y2+xy+1)(x2+y2+xy-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询