幂级数的收敛半径R=__________。

 我来答
学法律的小邵
高粉答主

2023-01-18 · 关注我不会让你失望
知道小有建树答主
回答量:793
采纳率:100%
帮助的人:21.6万
展开全部

解:∵原式=∑(2/2^n)x^n+∑[(-1/2)^n]x^n,易得∑(2/2^n)x^n、∑[(-1/2)^n]x^n的收敛半径均为R=2,故原级数的收敛半径均为R=2。

1、本题中的等于号应该删去;

2、本题是典型的幂级数(Power series),解答收敛半径的方法有两种:

A、比值法;

B、根值法。

3、收敛半径是从英文Convergent Radius翻译而来,它本身是一个

牵强附会的概念,不涉及平面区域问题,无半径可言。它的准确

意思是:收敛区间长度的一半。

扩展资料:

收敛半径r是一个非负的实数或无穷大的数,使得在 | z -a| < r时幂级数收敛,在 | z -a| > r时幂级数发散。

具体来说,当 z和 a足够接近时,幂级数就会收敛,反之则可能发散。收敛半径就是收敛区域和发散区域的分界线。

收敛半径可以被如下定理刻画:

一个中心为 a的幂级数 f的收敛半径 R等于 a与离 a最近的使得函数不能用幂级数方式定义的点的距离。到 a的距离严格小于 R的所有点组成的集合称为收敛圆盘。

参考资料:百度百科-收敛半径

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式