二阶常微分方程求解方法

 我来答
秦子筱
2023-03-15 · 我是一个小小的答题小能手~
秦子筱
采纳数:35520 获赞数:4354

向TA提问 私信TA
展开全部

二阶常微分方程求解方法如下:

比较常用的求解方法是待定系数法、多项式法、常数变易法和微分算子法等。

多项式法:

设常系数线性微分方程y''+py'+qy =pm,(x)e^(λx),其中p,q,λ是常数,pm(x)是x的m次多项式,令y=ze^(λz) ,则方程可化为:F″(λ)/2!z″+F′(λ)/1!z′+F(λ)z=pm(x) ,这里F(λ)=λ^2+pλ+q为方程对应齐次方程的特征多项式。

升阶法:

设y''+p(x)y'+q(x)y=f(x),当f(x)为多项式时,设f(x)=a0x^n+a1x^(n-1)+…+a(n-1)x+an,此时,方程两边同时对x求导n次,得:

y'''+p(x)y''+q(x)y'=a0x^n+a1x^(n-1)+…+a(n-1)x+an……

y^(n+1)+py^(n)+qy^(n-1)=a0n!x+a1(n-1)!

y^(n+2)+py^(n+1)+qy^(n)=a0n!

令y^n=a0n!/q(q≠0),此时,y^(n+2)=y^(n+1)=0。由y^(n+1)与y^n通过倒数第二个方程可得y^(n-1),依次升阶,一直推到方程y''+p(x)y'+q(x)y=f(x),可得到方程的一个特解y(x)。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式