平方差公式的几何意义
平方差公式的几何意义介绍如下:
公式表示两个数的和与这两个数的差的积等于这两个数的平方差。平方差:a²-b²=(a+b)(a-b)。
拓展介绍:
1、方差是各个数据分别与其平均数之差的平方的和的平均数,用字母D表示。在概率论和数理统计中,方差(Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。在许多实际问题中,研究随机变量和均值之间的偏离程度有着重要意义。其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s^2就表示方差。
2、平方差公式(difference of two squares)是数学公式的一种,它属于乘法公式、因式分解及恒等式,被普遍使用。平方差指一个平方数或正方形,减去另一个平方数或正方形得来的乘法公式:a²-b²=(a+b)(a-b)。
3、标准差(Standard Deviation) ,中文环境中又常称均方差,但不同于均方误差(mean squared error,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近)。
标准差是离均差平方和平均后的方根,用σ表示。假设有一组数值X1,X2,X3,......XN(皆为实数),其平均值(算术平均值)为μ,公式如图。