排序法的排序法的基本步骤
展开全部
排序法是根据一些特定的标准(例如工作的复杂程度、对组织的贡献大小等对各个职位的相对价值)进行整体比较,进而将职位按照相对价值的高低排列出一个次序。其基本步骤是:
1、对排序的标准达成共识。虽然排序法是对岗位的整体价值进行评价而排序,但也需要参与评估的人员对什么样的“整体价值”更高达成共识,如责任更大,知识技能更高,工作更加复杂,环境因素恶劣等。
2、选定参与排序的职位。如果公司较小可以选取全部职位进行排序。
3、评定人员根据事先确定评判标准,对公司同类岗位的重要性逐一作出评判,最重要的排在第一位,次要的、再次要的顺次往下排列。
4、将经过所有评定人员评定的每个岗位的结果加以汇总,得到序号和。然后将序号和除以评定人数,得到每一岗位的平均序数。最后,按平均序数的大小,由小到大评定出各岗位的相对价值的次序。
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
2016-06-02 · 国内知名职业教育培训机构
中公教育
中公教育是大型的多品类职业教育机构。在全国拥有1859个直营网点,覆盖319个地级市。主营业务横跨招录考试培训、学历提升和职业能力培训3大板块,提供超过100个品类的综合职业就业培训服务。
向TA提问
关注
展开全部
1.选择排序
定义:首先,选出数组中最小的元素,将它与数组中第一个元素交换。然后找出次小的元素,并将它与数组中第二个元素交换。按照这种方法一直进行下去,直到整个数组排完序。
交换次数:N-1
缺点:运行时间对文件已有序的部分依赖较少,从文件中选出最小元素的每一遍操作过程,并没有给出下一遍要找的最小元素的位置的相关消息。例如,该程序对已排好序的文件或各元素都相同的元素文件与对随机排列的文件排序所花的时间基本相同。
适用性:对于元素比较大,关键字又比较小的文件,应该选择该方法,而其他算法移动数据的步数都比选择排序更多。
sc(source code):
template <typename T, typename Compare>
void SelectSort(vector<T> & arr, Compare cp)
{
Display(arr, "before SelectSort:");
for (size_t i=0; i<arr.size(); ++i) {
size_t m = i;
for (size_t j=i+1; j<arr.size(); ++j) {
if ( !cp(arr[m], arr[j]) ) {
m = j;
}
}
if (m != i) {
swap(arr[i], arr[m]);
}
Display(arr, i);
}
}
2.插入排序(摘自:
插入排序(Insertion Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
算法描述:
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
从第一个元素开始,该元素可以认为已经被排序
取出下一个元素,在已经排序的元素序列中从后向前扫描
如果该元素(已排序)大于新元素,将该元素移到下一位置
重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
将新元素插入到该位置中
重复步骤2
如果比较操作的代价比交换操作大的话,可以采用二分查找法来减少比较操作的数目。该算法可以认为是插入排序的一个变种,称为二分查找排序。
算法复杂度:
如果目标是把n个元素的序列升序排列,那么采用插入排序存在最好情况和最坏情况。最好情况就是,序列已经是升序排列了,在这种情况下,需要进行的比较操作需(n-1)次即可。最坏情况就是,序列是降序排列,那么此时需要进行的比较共有n(n-1)/2次。插入排序的赋值操作是比较操作的次数减去(n-1)次。平均来说插入排序算法复杂度为O(n2)。因而,插入排序不适合对于数据量比较大的排序应用。但是,如果需要排序的数据量很小,例如,量级小于千,那么插入排序还是一个不错的选择。
sc:
template <typename T, typename Compare>
void InsertSort(vector<T>& arr, Compare cp)
{
Display(arr, "before InsertSort:");
for(size_t i=1; i<arr.size(); ++i) {
T temp = arr[i];
for(size_t j=i ; j>0 && !cp(temp, arr[j-1]) ; --j) {
arr[j] = arr[j-1];
arr[j-1] = temp;
Display(arr, "----");
}
Display(arr, i);
}
}
定义:首先,选出数组中最小的元素,将它与数组中第一个元素交换。然后找出次小的元素,并将它与数组中第二个元素交换。按照这种方法一直进行下去,直到整个数组排完序。
交换次数:N-1
缺点:运行时间对文件已有序的部分依赖较少,从文件中选出最小元素的每一遍操作过程,并没有给出下一遍要找的最小元素的位置的相关消息。例如,该程序对已排好序的文件或各元素都相同的元素文件与对随机排列的文件排序所花的时间基本相同。
适用性:对于元素比较大,关键字又比较小的文件,应该选择该方法,而其他算法移动数据的步数都比选择排序更多。
sc(source code):
template <typename T, typename Compare>
void SelectSort(vector<T> & arr, Compare cp)
{
Display(arr, "before SelectSort:");
for (size_t i=0; i<arr.size(); ++i) {
size_t m = i;
for (size_t j=i+1; j<arr.size(); ++j) {
if ( !cp(arr[m], arr[j]) ) {
m = j;
}
}
if (m != i) {
swap(arr[i], arr[m]);
}
Display(arr, i);
}
}
2.插入排序(摘自:
插入排序(Insertion Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
算法描述:
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
从第一个元素开始,该元素可以认为已经被排序
取出下一个元素,在已经排序的元素序列中从后向前扫描
如果该元素(已排序)大于新元素,将该元素移到下一位置
重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
将新元素插入到该位置中
重复步骤2
如果比较操作的代价比交换操作大的话,可以采用二分查找法来减少比较操作的数目。该算法可以认为是插入排序的一个变种,称为二分查找排序。
算法复杂度:
如果目标是把n个元素的序列升序排列,那么采用插入排序存在最好情况和最坏情况。最好情况就是,序列已经是升序排列了,在这种情况下,需要进行的比较操作需(n-1)次即可。最坏情况就是,序列是降序排列,那么此时需要进行的比较共有n(n-1)/2次。插入排序的赋值操作是比较操作的次数减去(n-1)次。平均来说插入排序算法复杂度为O(n2)。因而,插入排序不适合对于数据量比较大的排序应用。但是,如果需要排序的数据量很小,例如,量级小于千,那么插入排序还是一个不错的选择。
sc:
template <typename T, typename Compare>
void InsertSort(vector<T>& arr, Compare cp)
{
Display(arr, "before InsertSort:");
for(size_t i=1; i<arr.size(); ++i) {
T temp = arr[i];
for(size_t j=i ; j>0 && !cp(temp, arr[j-1]) ; --j) {
arr[j] = arr[j-1];
arr[j-1] = temp;
Display(arr, "----");
}
Display(arr, i);
}
}
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询