静息电位和动作电位及其产生原理
1个回答
展开全部
生物电现象是指生物细胞在生命活动过程中所伴随的电现象。它与细胞兴奋的产生和传导有着密切关系。细胞的生物电现象主要出现在细胞膜两侧,故把这种电位称为跨膜电位,主要表现为细胞在安静时所具有的静息电位和细胞在受到刺激时产生的动作电位。心电图、脑电图等均是由生物电引导出来的。
1.静息电位及其产生原理
静息电位是指细胞在安静时,存在于膜内外的电位差。生物电产生的原理可用"离子学说"解释。该学说认为:膜电位的产生是由于膜内外各种离子的分布不均衡,以及膜在不同情况下,对各种离子的通透性不同所造成的。在静息状态下,细胞膜对K+有较高的通透性,而膜内K+又高于膜外,K+顺浓度差向膜外扩散;细胞膜对蛋白质负离子(A-)无通透性,膜内大分子A-被阻止在膜的内侧,从而形成膜内为负、膜外为正的电位差。这种电位差产生后,可阻止K+的进一步向外扩散,使膜内外电位差达到一个稳定的数值,即静息电位。因此,静息电位主要是K+外流所形成的电-化学平衡电位。
2.动作电位及其产生原理
细胞膜受刺激而兴奋时,在静息电位的基础上,发生一次扩布性的电位变化,称为动作电位。动作电位是一个连续的膜电位变化过程,波形分为上升相和下降相。细胞膜受刺激而兴奋时,膜上Na+通道迅速开放,由于膜外Na+浓度高于膜内,电位比膜内正,所以,Na+顺浓度差和电位差内流,使膜内的负电位迅速消失,并进而转为正电位。这种膜内为正、膜外为负的电位梯度,阻止Na+继续内流。当促使Na+内流的浓度梯度与阻止Na+内流的电位梯度相等时,Na+内流停止。因此,动作电位的上升相的顶点是Na+内流所形成的电-化学平衡电位。
在动作电位上升相达到值时,膜上Na+通道迅速关闭,膜对Na+的通透性迅速下降,Na+内流停止。此时,膜对K+的通透性增大,K+外流使膜内电位迅速下降,直到恢复静息时的电位水平,形成动作电位的下降相。
可兴奋细胞每发生一次动作电位,膜内外的Na+、K+比例都会发生变化,于是钠-钾泵加速转运,将进入膜内的Na+泵出,同时将逸出膜外的K+泵入,从而恢复静息时膜内外的离子分布,维持细胞的兴奋性。
1.静息电位及其产生原理
静息电位是指细胞在安静时,存在于膜内外的电位差。生物电产生的原理可用"离子学说"解释。该学说认为:膜电位的产生是由于膜内外各种离子的分布不均衡,以及膜在不同情况下,对各种离子的通透性不同所造成的。在静息状态下,细胞膜对K+有较高的通透性,而膜内K+又高于膜外,K+顺浓度差向膜外扩散;细胞膜对蛋白质负离子(A-)无通透性,膜内大分子A-被阻止在膜的内侧,从而形成膜内为负、膜外为正的电位差。这种电位差产生后,可阻止K+的进一步向外扩散,使膜内外电位差达到一个稳定的数值,即静息电位。因此,静息电位主要是K+外流所形成的电-化学平衡电位。
2.动作电位及其产生原理
细胞膜受刺激而兴奋时,在静息电位的基础上,发生一次扩布性的电位变化,称为动作电位。动作电位是一个连续的膜电位变化过程,波形分为上升相和下降相。细胞膜受刺激而兴奋时,膜上Na+通道迅速开放,由于膜外Na+浓度高于膜内,电位比膜内正,所以,Na+顺浓度差和电位差内流,使膜内的负电位迅速消失,并进而转为正电位。这种膜内为正、膜外为负的电位梯度,阻止Na+继续内流。当促使Na+内流的浓度梯度与阻止Na+内流的电位梯度相等时,Na+内流停止。因此,动作电位的上升相的顶点是Na+内流所形成的电-化学平衡电位。
在动作电位上升相达到值时,膜上Na+通道迅速关闭,膜对Na+的通透性迅速下降,Na+内流停止。此时,膜对K+的通透性增大,K+外流使膜内电位迅速下降,直到恢复静息时的电位水平,形成动作电位的下降相。
可兴奋细胞每发生一次动作电位,膜内外的Na+、K+比例都会发生变化,于是钠-钾泵加速转运,将进入膜内的Na+泵出,同时将逸出膜外的K+泵入,从而恢复静息时膜内外的离子分布,维持细胞的兴奋性。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询