如何用格林公式计算曲线积分?
1个回答
展开全部
当原点在区域中的时候,P和Q都不是连续函数,更不可导了,所以,破坏了格林公式的条件。选择适当小的r把原点挖掉,可以保证在这个环形区域内P和Q都变成可微分函数,从而满足了格林公式。事实上就是把外面大边界的积分转化到里面小的圆圈上的积分,这样的好处是里面的圆圈是一个规则的图形,很容易写出方程,利用第二型曲线积分的标准求法去求解。适当小就是保证小圆盘包含着原点而且包含于大区域。至于为什么中间的环形区域积分等于零,是因为在这里Q对x的偏导数等于P对y 的偏导数啊,转化到边界(两个,内外边界)上就是两个曲线积分相等,这里还要注意积分的方向,边界的定向等知识点。
总体说来,就是题目不能直接用格林公式,但是可以用格林公式先把普通曲线上的积分转化到规则曲线上的积分,然后根据第二型曲线积分的标准求法去求,到了规则曲线这个时候,我不用格林公式了,所以,是不是包含原点已经对积分计算没有影响了。
总体说来,就是题目不能直接用格林公式,但是可以用格林公式先把普通曲线上的积分转化到规则曲线上的积分,然后根据第二型曲线积分的标准求法去求,到了规则曲线这个时候,我不用格林公式了,所以,是不是包含原点已经对积分计算没有影响了。
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询