数据包络分析的DEA模型
2023-08-15 广告
DEA是一个线性规划模型,表示为产出对投入的比率。通过对一个特定单位的效率和一组提供相同服务的类似单位的绩效的比较,它试图使服务单位的效率最大化。在这个过程中,获得100%效率的一些单位被称为相对有效率单位,而另外的效率评分低于100%的单位被称为无效率单位。
这样,企业管理者就能运用DEA来比较一组服务单位,识别相对无效率单位,衡量无效率的严重性,并通过对无效率和有效率单位的比较,发现降低无效率的方法。 DEA线形规划模型建立如下:
1) 定义变量
设Ek(k=1,2,……, K)为第k个单位的效率比旁拿嫌率,这里K代表评估单位的总数。
设uj(j=1,2,……, M)为第j种产出的系数,这里M代表所考虑的产出种类的总数。变量uj用来衡量产出价值降低一个单位所带来的相对的效率下降。
设vI(I=1,2,……,N)为第I种投入的系数,这里N代表所考虑的投入种类的总数。变量vI用来衡量投入价值降低一个单位带来的相对的效率下降。
设Ojk为一定时期内由第k个服务单位所创造的第j种产出的观察到的单位的数量。
设Iik为一定时期内由第k个服务单位所使用的第i种投入的实际的单位的数量。
2) 目标函数
目标是找出一组伴随每种产出的系数u和一组伴随每种投入的系数ν,从而给被评估的服务单位最高的可能效率。(敏颤*)
式中,e是被评估单位的代码。这个函数满足这样一个约束条件,当同一组投入和产出的系数(uj和vi)用于所有其他对比服务单位时,没有一个服务单位将超过100%的效率或超过1.0的比率。
3) 约束条件(**)
k=1,2,……,K
式中所有系数值都是正的且非零。
为了用标准线性规划软件求解这个有分数的线性规划,需要进行变形。要注意,目标函数和所有约束条件都是比率而不是线性函数。通过把所评估单位的投入人为地调整为总和1.0,这样等式(*)的目标函数可以重新表述为:满足以下约束条件:对于个服务单位,等式(**)的约束条件可类似转化为:k=1,2,…,K
式中 uj≥0 j=1,2,…,M vi≥0 i=1,2,…,N 关于服务单位的样本数量问题是由在分析种比较所挑选的投入和产出变量的数量所决定的。下列关系式把分析中所使用的服务单位运手数量K和所考虑的投入种类数N与产出种类数M联系出来,它是基于实证发现和DEA实践的经验: