方程的根求解公式

 我来答
棠梨06
2023-07-07 · 超过35用户采纳过TA的回答
知道答主
回答量:60
采纳率:100%
帮助的人:9242
展开全部

求根公式如下:

a为二次项系数,b为一次项系数,c是常数。

一元二次ax^2 +bx+c=0可用求根公式x= 求解,它是由方程系数直接把根表示出来的公式。这个公式早在公元9世纪由中亚细亚的阿尔·花拉子模给出。

拓展知识:

虽然阿拉伯人在九世纪,就掌握了求解一元二次方程的方法。

但一元二次方程最为重要的理论,是由法国数学家韦达建立的,他在《论方程的识别与订正》中讨论了根和方程的系数之间的关系,这一重要结果也被命名为韦达定理。

一元二次方程的求根公式

要讨论任意方程的性质,首先我们需要一个对所有方程都能使用的解法。

对于一元二次方程,我们只需要先把对应的二次函数一般式转化成顶点式,再开平方求解:

其中 Δ决定了方程能否顺利完成开平方的运算,被称为根的判别式。

如果 Δ>0 ,那么我们就能顺利开平方,计算出x的两个解,也可以叫两个根。

而如果 Δ<0 ,我们不能对负数开平方,方程在实数范围内无解。

特别地, Δ=0 时,我们说方程的两个解大小一样,叫做重根。

韦达定理的逆定理

如果我们有一元二次方程,可以通过韦达定理求出两个根的和与乘积。

那么反过来,如果我们知道两个根的和与乘积,就可以构造出对应的一元二次方程并求解。

人们思考高次多项式是否和二次多项式之间有某种联系。

对于有n个根的n次有理多项式,一定能因式分解为一堆一次或二次有理多项式的乘积,即一个有理根对应一个一次多项式,一对无理根对应一个二次多项式。

进一步利用复数解决无实根的情况,可以证明,n次多项式一定能因式分解为一堆一次或二次多项式的乘积,即一个实根对应一个一次多项式,一对复根对应一个二次多项式。

东莞大凡
2024-11-19 广告
板格标定棋盘是我们东莞市大凡光学科技有限公司在精密光学测量领域的重要工具。它采用高精度设计,确保每一个格板都达到严格的校准标准。通过使用板格标定棋盘,我们能够有效地对光学测量系统进行校准,从而提升测量的准确性和可靠性。这一工具在光学仪器的研... 点击进入详情页
本回答由东莞大凡提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式