为什么1/ x→0没有极限?

 我来答
试试剪
2023-08-03 · 超过175用户采纳过TA的回答
知道小有建树答主
回答量:809
采纳率:98%
帮助的人:25.4万
展开全部

当我们说1/x的极限不存在时,我们是指当x趋向于0时,1/x没有趋于一个确定的数值。换句话说,1/x在x趋于0时变得无穷大或无穷小。

例如,考虑当x趋向于0时,1/x的情况。当x很小但仍为正数时,1/x的值会变得非常大,而当x很小但是负数时,1/x的值会变得非常小。在这种情况下,我们无法为1/x确定一个具体的极限。

我们可以通过计算1/x的极限来验证这一点。根据定义,当x趋向于0时,1/x的极限被定义为:

lim(x0) 1/x = L

如果L存在(它可以是正无穷大、负无穷大或不存在),这意味着对于任何给定的正数ε,我们可以找到一个对应的正数δ,使得当0 < |x| < δ时,|1/x - L| < ε。然而,对于1/x来说,无论如何选择δ,都会存在一个x的值,使得|1/x|变得非常大或非常小,因此我们无法找到一个特定的L来满足定义。这就是为什么1/x在x趋向于0时没有极限的原因。

需要注意的是,这里的讨论是基于实数的情况。在复数领域中,1/x的极限是有意义的并且定义为0。

希望我的回答可以帮助到你,祝您生活愉快!身体健康,万事如意,福缘满满!

华瑞RAE一级代理商
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工... 点击进入详情页
本回答由华瑞RAE一级代理商提供
唯美倩影WZ时尚
2023-08-03 · 超过109用户采纳过TA的回答
知道小有建树答主
回答量:543
采纳率:100%
帮助的人:11万
展开全部
当我们说函数1/x在x趋近于无穷大时的极限不存在时,我们是指右侧和左侧的极限并不相等。对于函数1/x,当x趋近于正无穷大时,极限为0,即lim(x+∞) 1/x = 0。但当x趋近于负无穷大时,极限为-∞,即lim(x-∞) 1/x = -∞。由于这两个极限不相等,我们说这个函数在无穷大下的极限不存在。
换句话说,函数1/x在x趋近于无穷大时,没有一个确定的极限值。它的极限不是有限数(如0),也不是正无穷大或负无穷大。因此,我们称其为无穷极限(divergent limit)。
需要注意的是,虽然函数没有极限,但我们仍然可以对其进行重要的讨论和分析,比如它的倒数性质、渐近行为等。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
学无涯老师
高能答主

2023-08-02 · 汽车爱好者
学无涯老师
采纳数:231 获赞数:144136

向TA提问 私信TA
展开全部

limx→0xsin1/x等于0,原因如下:

limsin(1/x):

1、x→0

上述没有极限,因为正弦函数为周期连续函数,1/x为无穷量,sin1/x为不定值,因而没有极限。

limxsin(1/x):

2、x→0

正弦函数为周期连续函数,|sin1/x|≤1,是有限值, x为无穷小量,两者相乘仍为无穷小量,其极限为0。

性质

1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。

2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。

3、与子列的关系:数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式