求∫(0,2π)2(t- sint)^?

 我来答
东方欲晓09
2023-04-30 · TA获得超过8625个赞
知道大有可为答主
回答量:6114
采纳率:25%
帮助的人:1583万
展开全部
∫[0,2π] 2(t-sint)(1-cost)^2 dt
= ∫[0,2π] (1-cost) d(t-sint)^2
= [0,2π] (1-cost) (t-sint)^2 - ∫[0,2π] (t-sint)^2 sint dt
= ∫[0,2π] (t-sint)^2 dcost
= [0,2π] (t-sint)^2 cost - ∫[0,2π] cost 2(t-sint)(1-cost) dt
= 4π^2 - ∫[0,2π] cost 2(t-sint)(1-cost) dt (第二项展开后对各项分别求积分)
= 4π^2 + 2π^2
= 6π^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式