不等式(a-2)x²+2(a-2)x-4<0对任意x∈(0,1)恒成立,求实数a的取值范围
2个回答
展开全部
a-2≤0
4a²-8a+8+16a-32<0
4a²+8a-16<0
a²+2a-4<0
(-1-√5)<a<(-1+√5)
a≤-2
-1-√5<a≤-2
朋友,请及时采纳正确答案,下次还可能帮到您哦,您采纳正确答案,您也可以得到财富值,谢谢。
4a²-8a+8+16a-32<0
4a²+8a-16<0
a²+2a-4<0
(-1-√5)<a<(-1+√5)
a≤-2
-1-√5<a≤-2
朋友,请及时采纳正确答案,下次还可能帮到您哦,您采纳正确答案,您也可以得到财富值,谢谢。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
case 1: a=2
(a-2)x^2+2(a-2)x-4
=-4
case 1: true
case 2: a>2
f(x) =(a-2)x^2+2(a-2)x-4
f'(x) =2(a-2)x + 2(a-2)
f'(x)=0
=> x= -1 (min)
f(1) =(a-2)+2(a-2)-4
= 3a-10
f(1) ≤0
3a-10≤0
a≤ 10/3
solution for case 2: 2<a≤ 10/3
case 3: a<2
f(x) =(a-2)x^2+2(a-2)x-4
f'(x) =2(a-2)x + 2(a-2)
f'(x)=0
=> x= -1 (max)
f(0) = -4 <0
solution for case 3: a<2
(a-2)x^2+2(a-2)x-4<0对任意x∈(0,1)恒成立
case 1 or case 2 or case 3
ie
a≤ 10/3
(a-2)x^2+2(a-2)x-4
=-4
case 1: true
case 2: a>2
f(x) =(a-2)x^2+2(a-2)x-4
f'(x) =2(a-2)x + 2(a-2)
f'(x)=0
=> x= -1 (min)
f(1) =(a-2)+2(a-2)-4
= 3a-10
f(1) ≤0
3a-10≤0
a≤ 10/3
solution for case 2: 2<a≤ 10/3
case 3: a<2
f(x) =(a-2)x^2+2(a-2)x-4
f'(x) =2(a-2)x + 2(a-2)
f'(x)=0
=> x= -1 (max)
f(0) = -4 <0
solution for case 3: a<2
(a-2)x^2+2(a-2)x-4<0对任意x∈(0,1)恒成立
case 1 or case 2 or case 3
ie
a≤ 10/3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询