这个题目请给出详细解答
2个回答
展开全部
lim(x->0,y->0)f(x,y)=0=f(0,0),所以:在点(0,0)连续
fx(0,0)=lim(x->0){[x 2×sin(1/x 2)]-f(0,0)}/x
=lim(x->0)x×sin(1/x 2)=0
fy(0,0)=lim(y->0){[y 2×sin(1/y 2)]-f(0,0)}/y
=lim(y->0)y×sin(1/y 2)=0
fx(0,0)=lim(x->0){[x 2×sin(1/x 2)]-f(0,0)}/x
=lim(x->0)x×sin(1/x 2)=0
fy(0,0)=lim(y->0){[y 2×sin(1/y 2)]-f(0,0)}/y
=lim(y->0)y×sin(1/y 2)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2016-06-21
展开全部
你好!
解:∵im(x->0,y->0)f(x,y)=0=f(0,0) ∴在点(0,0)连续
fx(0,0)=lim(x->0){[x 2×sin(1/x 2)]-f(0,0)}/x
=lim(x->0)x×sin(1/x 2)=0
fy(0,0)=lim(y->0){[y 2×sin(1/y 2)]-f(0,0)}/y
=lim(y->0)y×sin(1/y 2)=0
望采纳哦!O(∩_∩)O谢谢
解:∵im(x->0,y->0)f(x,y)=0=f(0,0) ∴在点(0,0)连续
fx(0,0)=lim(x->0){[x 2×sin(1/x 2)]-f(0,0)}/x
=lim(x->0)x×sin(1/x 2)=0
fy(0,0)=lim(y->0){[y 2×sin(1/y 2)]-f(0,0)}/y
=lim(y->0)y×sin(1/y 2)=0
望采纳哦!O(∩_∩)O谢谢
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询