如何判断等比级数敛散性?

 我来答
我爱学习112
高粉答主

2023-06-25 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:156万
展开全部

等比级数敛散可以用比较判别法判别。

用比较判别法的技巧是:先判断级数一般项极限是否为零,不为零,则级数发散,若一般项极限为零,找与一般项同阶的无穷小,而且通常是P级数的一般项,从而由此P级数的敛散性确定原级数的敛散性。

收敛:

如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数。

调和级数的发散性被中世纪数学家奥里斯姆所证明。

一般的级数u1+u2+...+un+...,它的各项为任意级数,如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛,则称级数Σun绝对收敛。

狐指许香19
2023-06-25 · 贡献了超过320个回答
知道答主
回答量:320
采纳率:7%
帮助的人:5.8万
展开全部
判断级数敛散性的方法总结如下一、判定正项级数的敛散性1.先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。若不趋于零,则级数发散;如果趋于零,则考虑其它方法。2.再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数,3.用比值判别法或根值判别法进行判别,4.再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等.二、判定交错级数的敛散性1.利用莱布尼茨判别法进行分析判定.2.利用绝对级数与原级数之间的关系进行判定.3.一般情况下,若级数发散,级数未必发散;但是如果用比值法或根值法判别出绝对级数发散,则级数必发散.4.有时可把级数通项拆分成两个,利用“收敛+发散=发散”“收敛+收敛=收敛”判定.[primelocation.cn]
[jieshou.net.cn]
[gdspeedling.c o m.cn]
[zl-lawfirm.c o m.cn]
[leadfast.cn]
[clamandarin.cn]
[fp1030.cn]
[capdns.cn]
[18292565020baiye.cn]
[nhshenghua.c o m.cn]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式