矩阵怎么化简成行最简
展开全部
将矩阵化简为行最简形矩阵有多种化简方式,一般都是用可逆矩阵进行行列变换,在数值计算中,还经常用到正交型的变换与三角形的变换。
1、矩阵的QR分解:Q是一个正交阵,R是上三角矩阵。矩阵的QR分解可以有两种方法。
其一是Gram-Schmidt正交化方法。该方法的好处是,不论分解了多少步,都可以中途停止。利用这一方法得到的修正的Gram-Schmidt正交化方法,也可以算是Arnoldi方法是矩阵快速求特征值的方法。相关知识可参阅有关Krynov子空间的知识。
其二是Household正交三角化方法,该方法的本质是利用镜像变换算子将原矩阵下三角部分化为0。最后可以得到一个上三角矩阵。方法的缺点是不能中途停止。
2、矩阵的SVD分解:可将一个mxn矩阵通过乘以正交矩阵化简为单位阵和零矩阵的拼接。SVD(singular value decomposition),顾名思义奇异值分解,是适用于任何矩阵的一种分解。在求解低秩矩阵逼近时应用广泛。
3、Gauss消元法。这也是矩阵化简为标准型的一种方法。最后可以得到一个上三角矩阵。用途是求解线性方程组。优点是计算简便,缺点是稳定性分析过于复杂。
4、Schur分解:利用酉相似变换将一个复矩阵变换为一个上三角矩阵。在复矩阵是厄米矩阵的时候,最后可以得到一个对角矩阵。
1、矩阵的QR分解:Q是一个正交阵,R是上三角矩阵。矩阵的QR分解可以有两种方法。
其一是Gram-Schmidt正交化方法。该方法的好处是,不论分解了多少步,都可以中途停止。利用这一方法得到的修正的Gram-Schmidt正交化方法,也可以算是Arnoldi方法是矩阵快速求特征值的方法。相关知识可参阅有关Krynov子空间的知识。
其二是Household正交三角化方法,该方法的本质是利用镜像变换算子将原矩阵下三角部分化为0。最后可以得到一个上三角矩阵。方法的缺点是不能中途停止。
2、矩阵的SVD分解:可将一个mxn矩阵通过乘以正交矩阵化简为单位阵和零矩阵的拼接。SVD(singular value decomposition),顾名思义奇异值分解,是适用于任何矩阵的一种分解。在求解低秩矩阵逼近时应用广泛。
3、Gauss消元法。这也是矩阵化简为标准型的一种方法。最后可以得到一个上三角矩阵。用途是求解线性方程组。优点是计算简便,缺点是稳定性分析过于复杂。
4、Schur分解:利用酉相似变换将一个复矩阵变换为一个上三角矩阵。在复矩阵是厄米矩阵的时候,最后可以得到一个对角矩阵。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询