什么是人工智能的核心,是使计算机具有智能的主要方法
机器学习是人工智能的核心,是使计算机具有智能的主要方法。
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习是人工智能的根本路径,是人工智能的核心,是使计算机具有智能的根本途径。人工智能,英文缩写为AI。
是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
机器学习的分类:
(1)监督学习
监督学习就是训练机器学习的模型的训练样本数据有对应的目标值,监督学习就是通过对数据样本因子和已知的结果建立联系,提取特征值和映射关系,通过已知的结果,已知数据样本不断的学习和训练,对新的数据进行结果的预测。
监督学习通常用在分类和回归。监督学习难点是获取具有目标值的样本数据成本较高,成本高的原因在于这些训练集的要依赖人工标注工作。
(2)无监督学习
无监督学习跟监督学习的区别就是选取的样本数据无需有目标值,我们无需分析这些数据对某些结果的影响,只是分析这些数据内在的规律。
(3)半监督学习
半监督学习是监督学习和无监督学习相互结合的一种学习方法,通过半监督学习的方法可以实现分类、回归、聚类的结合使用。半监督学习是最近比较流行的方法。
(4)强化学习
强化学习是一种比较复杂的机器学习方法,强调系统与外界不断的交互反馈,它主要是针对流程中不断需要推理的场景,比如无人汽车驾驶,它更多关注性能。它是机器学习中的热点学习方法。
2020-11-19 广告