为什么在研究函数单调性时导数是个很重要的概念

 我来答
鲜于依秋530
2023-07-31 · TA获得超过146个赞
知道答主
回答量:2573
采纳率:93%
帮助的人:35.9万
展开全部
导数与函数单调性之间有着密切的关系。函数的单调性描述了函数在定义域内的增减性质,即函数的值是递增还是递减。

具体来说,如果一个函数在某个区间内的导数始终大于0,那么该函数在该区间内是递增的;
如果一个函数在某个区间内的导数始终小于0,那么该函数在该区间内是递减的。

换句话说,当函数的导数大于0时,函数的值随着自变量的增加而增加;
当函数的导数小于0时,函数的值随着自变量的增加而减小。

如果一个函数在某个区间内的导数恒大于等于0,那么该函数在该区间内是非递减的;
如果一个函数在某个区间内的导数恒小于等于0,那么该函数在该区间内是非递增的。

综上所述,函数的导数的正负性质可以告诉我们函数在定义域内的单调性。
导数大于0表示函数递增,导数小于0表示函数递减,导数恒大于等于0表示函数非递减,导数恒小于等于0表示函数非递增。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式