独立同分布一定独立吗?

 我来答
time张士强
2023-06-25 · TA获得超过1.4万个赞
知道大有可为答主
回答量:1902
采纳率:78%
帮助的人:341万
展开全部
不一定的,但是如果X和Y独立,X+Y就服从正态分布,其均值是X和Y均值的和,方差的平方是两个方差平方的和。
不独立的话,函数形状在三维空间就不是那种草帽型扩散的函数
相互独立联合密度里新的指数是 -{(x-u1)^2/o^1+(y-u2)^2/o2^2}
(x,y)在圆心为(u1,u2),双轴比例为 o1,o2 的所有椭圆上获得的指数相等
整个函数被椭圆状的等高线组成
-{(x-u1)^2/o^1+(y-u2)^2/o2^2+2(x-u1)(y-u2)/o1o2}这种情况下,椭圆有旋转,还是二维正太,x,y在二维面里定义域仍不受对方约束,也可以理解成把轴给转了一下.新轴u,v是关於x,y的互相垂直的向量,仍然可以不干涉
如果x和y相关
那麼y取值范围受x约束
比如y必须小於某某x
则定义域受到约束,总合还是1,密度相对聚拢,不知道变成什麽形状
当Y=X确定时,会缩成沿著一个面的1维了
顺带一说,如果X,Y独立同分布,等高线都是圆环,出来的函数是一个漂亮的草帽
只要独立同方差就是圆环等高,位置和期望有关,形状和方差有关
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式