什么是洛必达法则,用它求极限就是求导吗
洛必塔法则是解决求解“0/0”型与“∞/∞”型极限的一种有效方法,利用洛必塔法则求极限只要注意以下三点:
1、在每次使用洛必塔法则之前,必须验证是“0/0”型与“∞/∞”型极限。否则会导致错误;
2、洛必塔法则是分子与分母分别求导数,而不是整个分式求导数;
3、使用洛必塔法则求得的结果是实数或∞(不论使用了多少次),则原来极限的结果就是这个实数或∞,求解结束;如果最后得到极限不存在(不是∞的情形),则不能断言原来的极限也不存在,应该考虑用其它的方法求解。
扩展资料:
两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。
洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等。
参考资料来源:百度百科--洛必达法则
2023-07-25 广告
洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法,用它求极限就是求导。
两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。
扩展资料:
洛必达法则应用条件:
在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。
如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则 。
参考资料来源:百度百科-洛必达法则
是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
有几个前提条件
0/0型不定式极限
∞/∞型不定式极限
其他类型不定式极限
0*∞,1^∞,0^0,∞^0,∞-∞