初三一道数学题求完整解答过程 10
1个回答
展开全部
解:(1)△AEC∽△CED,△AEC∽△BCD.
∵∠ACD+∠DCE=∠ACD+45°,
∴∠ACE=∠BDC,
∴△AEC∽△BCD;
(2)∵∠A=∠B=45°,∠AEC=∠DCB=45°+∠BCE,
∴△AEC∽△BCD,
∴BD•AE=AC 2 ,
∴BD•AE=AC 2 =
12
×AB 2 =8,
y=
8x
(2<x<4).
(3)证明如下:将△ABC绕点C顺时针旋转90°,
设E点对应点为E′,连接E′D,
∵∠ACB=90°,AC=BC, 
∴旋转后B与A重合,
又∵∠DCE=45°,
∴∠E′CD′=45°,
又∵CE′=CE,CD为公共边,
∴△CE′D≌△CED,
∴DE′=DE,
又∵∠E′AC=45°,∠CAD=45°,
∴∠E′AD=90°,
∴线段DE、AD、EA总能构成一个直角三角形;
(4)AD:DE:EB=1:
√3
:1.
∵∠ACD+∠DCE=∠ACD+45°,
∴∠ACE=∠BDC,
∴△AEC∽△BCD;
(2)∵∠A=∠B=45°,∠AEC=∠DCB=45°+∠BCE,
∴△AEC∽△BCD,
∴BD•AE=AC 2 ,
∴BD•AE=AC 2 =
12
×AB 2 =8,
y=
8x
(2<x<4).
(3)证明如下:将△ABC绕点C顺时针旋转90°,
设E点对应点为E′,连接E′D,
∵∠ACB=90°,AC=BC, 
∴旋转后B与A重合,
又∵∠DCE=45°,
∴∠E′CD′=45°,
又∵CE′=CE,CD为公共边,
∴△CE′D≌△CED,
∴DE′=DE,
又∵∠E′AC=45°,∠CAD=45°,
∴∠E′AD=90°,
∴线段DE、AD、EA总能构成一个直角三角形;
(4)AD:DE:EB=1:
√3
:1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询