0的阶乘为什么等于1

 我来答
帐号已注销
推荐于2019-10-28 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:16.9万
展开全部

0的阶乘为1。


具体如下:


一个正整数的阶乘是所有小于及等于该数的正整数的积,并且有0的阶乘为1。简单一点是认为规定的,但它是有道理的,因为阶乘是一个递推定义,n!=n*(n-1)!,那么必然有一个初值需要人为规定.


因为1!=1,根据1!=1*0!,所以0!=1而不是0.

扩展资料:

n!=1×2×3×...×n或者0!=1,n!=(n-1)!×n

例如,求1x2x3x4...xn的值,此时可以用阶乘的方式表示:

n!=1×2×3×...×(n-1)n或者n!=(n-1)!×n

由于正整数的阶乘是一种连乘运算,而0与任何实数相乘的结果都是0。所以用正整数阶乘的定义是无法推广或推导出0!=1的。即在连乘意义下无法解释“0!=1”。

给“0!”下定义只是为了相关公式的表述及运算更方便。

在离散数学的组合数定义中,对于正整数  满足条件  的任一非负整数  ,  都是有意义的,特别地在  及  时,有 。 

但是对于组合数公式  来说,在  及 时,都由于遇到0的阶乘没有定义而发生巨大尴尬。对照结论  和公式  ,我们顺势而为地定义“0!=1”就显得非常必要了。这样,组合数公式在  及  时也通行无阻,不会有任何尴尬了。

“为什么0!=1”这个问题是伪问题,而初学者总要追问这个伪问题。这就说明了我们在教材和教学实践中都没有把“有关‘0!=1’只是一种‘定义’的概念”讲清楚。

有教辅材料上把上述必要性及合理性视作为推导的过程,那当然是大错特错了。必要性及合理性只是有限几个例子,“0!=1”这种定义是不能用举若干例子的方法来证明的。

但是  这个定义使用至今可谓久经考验方便多多,没有出现过任何逻辑上不合理的现象。

参考资料:百度百科-阶乘

小小芝麻大大梦
高粉答主

2019-02-05 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:1083万
展开全部

0的阶乘为1。

具体如下:

一个正整数的阶乘是所有小于及等于该数的正整数的积,并且有0的阶乘为1。简单一点是认为规定的,但它是有道理的,因为阶乘是一个递推定义,n!=n*(n-1)!,那么必然有一个初值需要人为规定。

因为1!=1,根据1!=1*0!,所以0!=1而不是0。

一个正整数的阶乘是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。

亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。

扩展资料:

n!=1×2×3×...×n或者0!=1,n!=(n-1)!×n

例如,求1x2x3x4...xn的值,此时可以用阶乘的方式表示:

n!=1×2×3×...×(n-1)n或者n!=(n-1)!×n

正实数阶乘: n!=│n│!=n(n-1)(n-2)....(1+x).x!=(i^4m).│n│!

负实数阶乘: (-n)!=cos(mπ)│n│!=(i^2m)..n(n-1)(n-2)....(1+x).x!

(ni)!=(i^m)│n│!=(i^m)..n(n-1)(n-2)....(1+x).x!

(-ni)!=(i^3m)│n│!=(i^3m)..n(n-1)(n-2)....(1+x).x!

参考资料来源:百度百科-阶乘

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
白雪忘冬
高粉答主

2020-09-20 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376693

向TA提问 私信TA
展开全部

从阶乘的定义出发。从阶乘表达式n!=n×(n-1)!中,知道一个数的阶乘是递推定义的。比如要计算一个任意的整数m的阶乘,我们就把m作为初值,计算m!=m×(m-1)!。

同样的,当m=l时,m!=1!=1×0!=1,取等式中最后一个等号的两边,即1×0!=1,这个等式两边同时约去1,就得到如下结果:0!=1。

阶乘的计算方法是1乘以2乘以3乘以4,一直乘到所要求的数。例如所要求的数是6,则阶乘式是1×2×3×…×6,得到的积是720,720就是6的阶乘。

如果所要求的数是n,则阶乘式是1×2×3×…×n,设得到的积是x,x就是n的阶乘。任何大于1的自然数n的阶乘的表示方法是:n!=1×2×3×……×n或n!=n×(n-1)!。

扩展资料

双阶乘:

双阶乘用“m!!”表示。当 m 是自然数时,表示不超过 m 且与 m 有相同奇偶性的所有正整数的乘积。如:

当 m 是负奇数时,表示绝对值小于它的绝对值的所有负奇数的绝对值积的倒数。

当 m 是负偶数时,m!!不存在。

自然数双阶乘比的极限:

参考资料来源:百度百科-阶乘

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
推荐于2017-12-23
展开全部
说的简单一点是人为规定的,但它是有道理的,你想过没有,为什么不规定0!=0呢?因为阶乘是一个递推定义,n!=n*(n-1)!,那么必然有一个初值需要人为规定。我们知道1!=1,根据1!=1*0!,所以0!=1而不是0或其他的值。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
姓王的wy451

2017-12-29 · TA获得超过48.3万个赞
知道大有可为答主
回答量:8万
采纳率:78%
帮助的人:9368万
展开全部
这是直接认定的,因为阶乘是一个递推定义,n!=n*(n-1)!
那么必然有一个初值需要人为规定。我们知道1!=1,根据1!=1*0!
所以推算出 0!=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(28)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式