二元函数的极限问题怎么求

 我来答
afraidbutchery
2017-02-11 · TA获得超过2880个赞
知道小有建树答主
回答量:3057
采纳率:35%
帮助的人:429万
展开全部
沿不同曲线趋于时极限如果不同的话那么极限是不存在的,这个是证明多元函数极限不存在的方法极限是微积分学的基础,导数、积分等概念都是在极限的基础上建立起来的.从极限理论出发产生的极限方法,是数学分析的最基本的方法.更好地理解极限思想,掌握极限理论,应用极限方法是学习微积分的关键.一元函数的极限及求法,在各种高等数学教材中都有详细的讨论.除了常用的定义、运算法则、连续性方法,本文给出了六种适用性较强的二元函数极限计算方法,希望对初学者有一定帮助.一、变量替换(转化为一元函数计算)例1lim(x,y)→(0,0)1-cos(x2+y2)x2+y2.解令t=x2+y2,则当(x,y)→(0,0)时,t→0,所以lim(x,y)→(0,0)1-cos(x2+y2)x2+y2=limt→01-costt=limt→0t22t=limt→0t2=0.二、利用无穷小替换例2lim(x,y)→(0,0)sin(x3+y3)x+y.解因为当(x,y)→(0,0)时,x3+y3→0,所以sin(x3+y3)~x3+y3,于是lim(x,y)→(0,0)sin(x3+y3)x+y=lim(x,y)→(0,0)x3+y3x+y=lim(x,y)→(0,0)(x2-xy.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式