第三题怎么做?
3个回答
展开全部
3.
令√x=t,则x=t²
∫[(1+x)²/√x]dx
= ∫[(1+t²)²/t]d(t²)
=2∫[(1+t²)²·t/t]dt
=2∫(t⁴+2t²+1)dt
=2[(1/5)t⁵+(2/3)t³+t] +C
=(2/15)(3t⁴+10t²+15)t +C
=(2/15)(3x²+10x+15)√x +C
令√x=t,则x=t²
∫[(1+x)²/√x]dx
= ∫[(1+t²)²/t]d(t²)
=2∫[(1+t²)²·t/t]dt
=2∫(t⁴+2t²+1)dt
=2[(1/5)t⁵+(2/3)t³+t] +C
=(2/15)(3t⁴+10t²+15)t +C
=(2/15)(3x²+10x+15)√x +C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询