
求∫[0:π/2] xcos2xdx
1个回答
展开全部
∫(0->π/2) xcos2xdx
=(1/2)∫(0->π/2) xdsin2x
=(1/2)[ x.sin2x]|(0->π/2) -(1/2)∫(0->π/2) sin2x dx
=0-(1/2)∫(0->π/2) sin2x dx
=(1/4)[ cos2x ]|(0->π/2)
=-1/2
=(1/2)∫(0->π/2) xdsin2x
=(1/2)[ x.sin2x]|(0->π/2) -(1/2)∫(0->π/2) sin2x dx
=0-(1/2)∫(0->π/2) sin2x dx
=(1/4)[ cos2x ]|(0->π/2)
=-1/2
更多追问追答
追问
请一问一开头的那个二分之一从哪里来的
追答
dsin2x =2cos2x dx
∫(0->π/2) xcos2xdx
=(1/2)∫(0->π/2) x(2cos2xdx)
=(1/2)∫(0->π/2) xdsin2x
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询