
定积分,求解过程 10
1个回答
2017-01-06 · 知道合伙人教育行家
关注

展开全部
原式=∫[0~1]ln(1+x)·d[-1/(x+2)]
=-ln(1+x)/(x+2) |[0~1]
+∫[0~1]1/(x+2)·1/(x+1)·dx
=-1/3·ln2+∫[0~1]{1/(x+1)-1/(x+2)}·dx
=-1/3·ln2+[ln(x+1)-ln(x+2)] |[0~1]
=-1/3·ln2+(ln2-ln3)-(ln1-ln2)
=5/3·ln2-ln3
=-ln(1+x)/(x+2) |[0~1]
+∫[0~1]1/(x+2)·1/(x+1)·dx
=-1/3·ln2+∫[0~1]{1/(x+1)-1/(x+2)}·dx
=-1/3·ln2+[ln(x+1)-ln(x+2)] |[0~1]
=-1/3·ln2+(ln2-ln3)-(ln1-ln2)
=5/3·ln2-ln3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询