微积分多元函数求极限
展开全部
解:
因为分少,所以简答!
解:
(x³+y³)/(x²+y²)
=(x+y)(x²+y²-xy)/(x²+y²)
≥(x+y)(x²+y²)/2(x²+y²)
=(x+y)/2
(x³+y³)/(x²+y²)
≤(|x|³+|y|³)/(x²+y²)
≤(|x|+|y|)(x²+y²+2|xy|)/(x²+y²)
=(|x|+|y|)(x+y)²/(x²+y²)
≤2(|x|+|y|)(x+y)²/(x+y)²
=2(|x|+|y|)
∴夹逼准则:
lim (x³+y³)/(x²+y²) =0
因为分少,所以简答!
解:
(x³+y³)/(x²+y²)
=(x+y)(x²+y²-xy)/(x²+y²)
≥(x+y)(x²+y²)/2(x²+y²)
=(x+y)/2
(x³+y³)/(x²+y²)
≤(|x|³+|y|³)/(x²+y²)
≤(|x|+|y|)(x²+y²+2|xy|)/(x²+y²)
=(|x|+|y|)(x+y)²/(x²+y²)
≤2(|x|+|y|)(x+y)²/(x+y)²
=2(|x|+|y|)
∴夹逼准则:
lim (x³+y³)/(x²+y²) =0
追问
其实挺详细?等会慢慢看😂
_
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询