两个矩阵相似,为什么它们的秩相等
矩阵A与B相似,则B=(P^-1)AP,可逆矩阵是初等阵的乘积,所以A可以经过初等变换化为B,而初等变换不改变矩阵的秩,所以r(B)=r(A)。("P^(-1)"表示P的-1次幂,也就是P的逆矩阵)
矩阵A与B相似,必须同时具备两个条件:
(1)矩阵A与B不仅为同型矩阵,而且是方阵。
(2)存在n阶可逆矩阵P,使得P^-1AP=B。
扩展资料:
n阶矩阵A与对角矩阵相似的充分必要条件为矩阵A有n个线性无关的特征向量。
注: 定理的证明过程实际上已经给出了把方阵对角化的方法。
若矩阵可对角化,则可按下列步骤来实现:
(1) 求出全部的特征值;
(2)对每一个特征值,设其重数为k,则对应齐次方程组的基础解系由k个向量构成,即为对应的线性无关的特征向量;
(3)上面求出的特征向量恰好为矩阵的各个线性无关的特征向量。
判断两个矩阵是否相似的辅助方法:
(1)判断特征值是否相等;
(2)判断行列式是否相等;
(3)判断迹是否相等;
(4)判断秩是否相等。
以上条件可以作为判断矩阵是否相似的必要条件,而非充分条件。
(两个矩阵若相似于同一对角矩阵,这两个矩阵相似。)
参考资料来源:百度百科——相似矩阵
矩阵A与B相似,则B=(P^-1)AP,可逆矩阵是初等阵的乘积,所以A可以经过初等变换化为B,而初等变换不改变矩阵的秩,所以r(B)=r(A)。("P^(-1)"表示P的-1次幂,也就是P的逆矩阵)
矩阵A与B相似,必须同时具备两个条件:
(1)矩阵A与B不仅为同型矩阵,而且是方阵。
(2)存在n阶可逆矩阵P,使得P^-1AP=B。
扩展资料:
相似矩阵的性质:
1、若n阶矩阵A与B相似,则A与B的特征多项式相同,从而A与B的特征值亦相同。
2、相似矩阵的秩相等。
3、相似矩阵的行列式相等。
4、相似矩阵具有相同的可逆性,当它们可逆时,则它们的逆矩阵也相似。