矩阵方程求解AXB=C,求下题详解谢谢! 10
A的逆·A·X·B=A的逆·C,所以X·B=A的逆·C,X·B·B的逆=A的逆·C·B的逆,所以X=A的逆·C·B的逆,求逆矩阵和矩阵的乘法即可。
列出方程组的增广矩阵B,进行初等行变换化为最简形,得到R(A)等于R(B)等于二,故方程组有解,根据行最简形,得到x1,x2,x3,x4的关系表达式,设x2等于24等于零,则x1等于x3头1/2,得到一个方程组的特解y*。
注意事项:
矩阵A正交,那么矩阵的伴随矩阵一定是正交的。我们知道正交的定义是A以及A的转置等于A的转置与A的乘积等于E。也就是说A的转置等于A的逆。根据伴随矩阵的性质有A的行列式乘以A的转置等于伴随矩阵。
矩阵方程的行等变换。一般情况下有AX=B,XA=B,AXC=B。那么A,C是可逆的,则依次有X=A的逆矩阵乘以B,X=B矩阵乘以A的逆矩阵。X=A矩阵的逆矩阵B乘以C的逆矩阵。
A的逆·A·X·B=A的逆·C,所以X·B=A的逆·C,X·B·B的逆=A的逆·C·B的逆,所以X=A的逆·C·B的逆,求逆矩阵和矩阵的乘法即可。
列出方程组的增广矩阵B,进行初等行变换化为最简形,得到R(A)等于R(B)等于二,故方程组有解,根据行最简形,得到x1,x2,x3,x4的关系表达式,设x2等于24等于零,则x1等于x3头1/2,得到一个方程组的特解y*。
扩展资料:
注意事项:
矩阵A正交,那么矩阵的伴随矩阵一定是正交的。我们知道正交的定义是A以及A的转置等于A的转置与A的乘积等于E。也就是说A的转置等于A的逆。根据伴随矩阵的性质有A的行列式乘以A的转置等于伴随矩阵。
矩阵方程的行等变换。一般情况下有AX=B,XA=B,AXC=B。那么A,C是可逆的,则依次有X=A的逆矩阵乘以B,X=B矩阵乘以A的逆矩阵。X=A矩阵的逆矩阵B乘以C的逆矩阵。
参考资料来源:百度百科-矩阵方程
广告 您可能关注的内容 |