对数的真数取值范围是多少?

 我来答
南方小肉团cS
2019-09-06 · TA获得超过2654个赞
知道答主
回答量:771
采纳率:66%
帮助的人:38.6万
展开全部

真数的取值范围,你知道是多少么,不知道的朋友们来看看吧

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
toma斗_2506
2008-08-03 · TA获得超过2.5万个赞
知道大有可为答主
回答量:2856
采纳率:50%
帮助的人:0
展开全部
大于零
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
扬濮匡书萱
2020-07-11 · TA获得超过4111个赞
知道大有可为答主
回答量:3173
采纳率:27%
帮助的人:209万
展开全部
真数式子没根号就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数)。
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
底数则要>0且≠1
真数>0
并且,在比较两个函数值时:
如果底数一样,真数越大,函数值越大。(a>1时)
如果底数一样,真数越小,函数值越大。(0<a<1时)
扩展资料:
与指数的关系:
同底的对数函数与指数函数互为反函数。
当a>0且a≠1时,ax=N。
x=㏒aN。
关于y=x对称。
对数函数的一般形式为
y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。
因此指数函数里对于a的规定(a>0且a≠1),对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。
可以看到,对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
参考资料:百度百科-对数函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
谷梁秀梅接霜
2020-01-04 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.3万
采纳率:26%
帮助的人:1252万
展开全部
真数式子没根号就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数)。
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
底数则要>0且≠1
真数>0
并且,在比较两个函数值时:
如果底数一样,真数越大,函数值越大。(a>1时)
如果底数一样,真数越小,函数值越大。(0<a<1时)
扩展资料:
与指数的关系:
同底的对数函数与指数函数互为反函数。
当a>0且a≠1时,ax=N。
x=㏒aN。
关于y=x对称。
对数函数的一般形式为
y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。
因此指数函数里对于a的规定(a>0且a≠1),对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。
可以看到,对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
参考资料:百度百科-对数函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
单彗鞠贤惠
2019-04-15 · TA获得超过3683个赞
知道大有可为答主
回答量:3079
采纳率:32%
帮助的人:211万
展开全部
真数式子没根号就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数)。
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
底数则要>0且≠1
真数>0
并且,在比较两个函数值时:
如果底数一样,真数越大,函数值越大。(a>1时)
如果底数一样,真数越小,函数值越大。(0<a<1时)
扩展资料:
与指数的关系:
同底的对数函数与指数函数互为反函数。
当a>0且a≠1时,ax=N。
x=㏒aN。
关于y=x对称。
对数函数的一般形式为
y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。
因此指数函数里对于a的规定(a>0且a≠1),对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。
可以看到,对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
参考资料:百度百科-对数函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式