大数据是干什么的 有什么用
大数据是众多学科与统计学交叉产生的一门新兴学科。大数据牵扯的数据挖掘、云计算一类的,所以是计算机一类的专业。分布比较广,应用行业较多。
零售业:主要集中在客户营销分析上,通过大数据技术可以对客户的消费信息进行分析。获知客户的消费习惯、消费方向等,以便商场做好更合理商品、货架摆放,规划市场营销方案、产品推荐手段等。
金融业:在金融行业里头,数据即是生命,其信息系统中积累了大量客户的交易数据。通过大数据可以对客户的行为进行分析、防堵诈骗、金融风险分析等。
医疗业:通过大数据可以辅助分析疫情信息,对应做出相应的防控措施。对人体健康的趋势分析在电子病历、医学研发和临床试验中,可提高诊断准确性和药物有效性等。
制造业:该行业对大数据的需求主要体现在产品研发与设计、供应链管理、生产、售后服务等。通过数据分析,在产品研发过程中免除掉一些不必要的步骤,并且及时改善产品的制造与组装的流程。
2022-03-14 广告
一、对信息的理解。你发的每一张图片、每一个新闻、每一个广告,这些都是信息,你对这个信息的理解是大数据重要的领域。
二、用户的理解。每个人的基本特征,你的潜在的特征,每个用户上网的习惯等等,这些都是对用户的理解。
三、关系。关系才是我们的核心,信息与信息之间的关系,一条微博和另外一条微博之间的关系,一个广告和另外一个广告的关系。一条微博和一个视频之间的关系,这些在我们肉眼去看的时候是相对简单的。
大数据专业术语:
1、apache软件基金会(asf)
提供了许多大数据的开源项目,目前有350多个项目。是专门为支持开源软件项目而办的一个非盈利性组织。在它所支持的apache项目与子项目中,所发行的软件产品都遵循apache许可证。
2、apachemahout
mahout提供了一个用于机器学习和数据挖掘的预制算法库,也是创建更多算法的环境。换句话说,是一个机器学习的天堂环境
3、apacheoozie
在任何编程环境中,需要一些工作流程系统来以预定义的方式和定义的依赖关系来安排和运行工作。oozie提供的大数据工作以apachepig,mapreduce和hive等语言编写。
大数据是一系列技术的统称,经过多年的发展,大数据已经形成了从数据采集、整理、传输、存储、安全、分析、呈现和应用等一系列环节,这些环节涉及到诸多大数据工作岗位,这些工作岗位与物联网、云计算也都有密切的联系。
大数据是一个抽象的概念,对当前无论是企业还是政府、高校等单位面临的数据无法存储、无法计算的状态。
扩展资料:
大数据应用举例
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
参考资料来源:百度百科-大数据 (IT行业术语)
2019-12-18 · 大数据人才培养的机构
关于大数据,麦肯锡全球研究所给出的定义是:
一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
简单理解为:
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。
大数据的核心作用是数据价值化,简单说就是大数据让数据产生各种“价值”,这个数据价值化的过程就是大数据要做的主要事情。
大数据处理技术也就是这么个过程,过程可以分为收集,处理,分析识别、预测这四个步骤。其实就是模拟人类对事物认知这个过程并把这个过程程序化、海量化。当然未来大数据的应用场景将会越来越多,比如物联网、自动驾驶、人工智能等等。前景十分看好。使用大数据技术的地方且比较有代表性的产品有那些:
云存储:中国比较好的有百度云,国外比较好的有AWS等。正是因为有这些产品的出现,数据在云端的概念才终于变成现实了,大家都不用踹着U盘到处跑了。
内容推荐:最具代表性的有今日头条,它正是运用了大数据技术来找到喜欢的内容并且推荐。自从这个产品出现以后已经有很多人抛弃以前的新闻阅读方式。让网易新闻、新浪新闻、腾讯新闻等产品上了不少火。现在大家都开始纷纷的学习。
物品推荐:电影网站、音乐网站、电商网站这些网站都会把根据浏览行为进行分析,根据兴趣推荐给相应的物品,比如爱奇艺、QQ音乐、京东等。
如果想学习数据分析,建议到专业的机构学习比较好,例如CDA认证中心就是一个不错的选择,CDA是大数据和人工智能时代面向国际范围全行业的数据分析专业人才职业简称,具体指在互联网、金融、咨询、电信、零售、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据人才。