已知曲线y=x^2+ax+b与2y=xy^3-1在点(1,-1)处有公共切线,求常数a,b
展开全部
(1,-1)
y=x^2+ax+b
-1=1+a+b
a+b=-2 (1)
y=x^2+ax+b
y' = 2x+a
y'|(1,-1) = 2+a
2y=xy^3-1
2y' = 3xy^2.y' + y^3
y' = y^3/(2-3xy^2)
y'|(1,-1) = -1/(2-3) = 1
2+a = 1
a=-1
from (1)
a+b=-2
-1+b=-2
b=-1
(a,b)=(-1,-1)
y=x^2+ax+b
-1=1+a+b
a+b=-2 (1)
y=x^2+ax+b
y' = 2x+a
y'|(1,-1) = 2+a
2y=xy^3-1
2y' = 3xy^2.y' + y^3
y' = y^3/(2-3xy^2)
y'|(1,-1) = -1/(2-3) = 1
2+a = 1
a=-1
from (1)
a+b=-2
-1+b=-2
b=-1
(a,b)=(-1,-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询