1个回答
展开全部
e^(xy)-y = 0, 对x求导, e^(xy)(y+xy')-y' = 0, y' = ye^(xy)/[1-xe^(xy)];
e^z-xz = 0, 对x求导,z'e^z - z - xz' = 0, z' = z/(e^z-x)
u = f(x,y,z)
du/dx = ∂f/∂x + (∂f/∂y)(dy/dx) + (∂f/∂z)(dz/dx)
= ∂f/∂x + {ye^(xy)/[1-xe^(xy)]}(∂f/∂y) + [z/(e^z-x)](∂f/∂z)
e^z-xz = 0, 对x求导,z'e^z - z - xz' = 0, z' = z/(e^z-x)
u = f(x,y,z)
du/dx = ∂f/∂x + (∂f/∂y)(dy/dx) + (∂f/∂z)(dz/dx)
= ∂f/∂x + {ye^(xy)/[1-xe^(xy)]}(∂f/∂y) + [z/(e^z-x)](∂f/∂z)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询