求解一函数题:已知y=-x的平方+ax-a/4+1/2在区间[0,1]上最大值为2,求实数a的值。

 我来答
利翼金寰
2020-02-20 · TA获得超过2.9万个赞
知道小有建树答主
回答量:1.1万
采纳率:33%
帮助的人:643万
展开全部
y=-(x-a/2)^2+a^2/4-a/4+1/2
所以
当a/2∈【0,1】时,y最小值为a^2/4-a/4+1/2=2,解得a=3或a=-2,此时两解均不在范围
当a/2>1时,y在【0,1】单调递增,最大值在x=1时取得,即-1+a-a/4+1/2=2,a=10/3>2符合
当a/2<0时,y在【0,1】单调递减,最大值在x=0时取得,即-a/4+1/2=2
所以a=-6符合
所以综合知a=-6或a=10/3
姬梓瑶兆涵
2020-02-06 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:34%
帮助的人:846万
展开全部
解:y=-x^2+ax-a/4+1/2
=-(x-a/2)^2-a/4+a^2/4+1/2
由题意得-a/4+a^2/4+1/2=2
(a-3)(a+2)=0
a=3或-2
1.当a=3时-a/2=-3/2
不在
[0,1]内
,因此舍去
2.当a=-2时-a/2=1

[0,1]内终上所述a=-2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
竹珺宜庆
2020-03-20 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:30%
帮助的人:887万
展开全部
二元方程的问题
根据单调性先增后减

1
如果对称轴在[0,1]之间
在对称轴处取最大值

2
如果对称轴不在[0,1]之间在x=0或x=1处取去最大
再由求得的a判断单调性是否矛盾
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式