微分中值定理中值点的例题

想要几道针对微分中值定理中“中值点”的例题,一共六题,如图所示... 想要几道针对微分中值定理中“中值点”的例题,一共六题,如图所示 展开
 我来答
没有北海ck
2019-05-02 · TA获得超过3975个赞
知道大有可为答主
回答量:6579
采纳率:78%
帮助的人:247万
展开全部
满足在闭区间上连续,开区间可导就可以使用中值定理。
如果是条件换减弱为开区间连续,开区间可导,令f(x)=0 (0<=x<1) ,f(x)=1 (x=1),,这个定义在【0,1】闭区间上的函数,这时函数在(0,1)上连续且可导,但x=1点显然不能使用拉格朗日中值定理,因为(0,1)上导数都是0;
如果条件加强为闭区间连续,闭区间可导,对于f(x)=arcsin(x),导数f'(x)=1/(1-x^2)^(0.5),在1,-1两点导数不存在,但导函数在定义域内可以取到任意正值,所以原函数(单调递增)是可以使用中值定理的。
从这两点可以看出,条件减弱之后定理不一定成立,加强之后使用范围减小。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式