协同过滤和基于内容推荐有什么区别?
2024-09-03 广告
举个简单的小例子,我们已知道
用户u1喜欢的电影是A,B,C
用户u2喜欢的电影是A, C, E, F
用户u3喜欢的电影是B,D
我们需要解决的问题是:决定对u1是不是应该推荐F这部电影
基于内容的做法:要分析F的特征和u1所喜欢的A、B、C的特征,需要知道的信息是A(战争片),B(战争片),C(剧情片),如果F(战争片),那么F很大程度上可以推荐给u1,这是基于内容的做法,你需要对item进行特征建立和建模。
协同过滤的办法:那么你完全可以忽略item的建模,因为这种办法的决策是依赖user和item之间的关系,也就是这里的用户和电影之间的关系。我们不再需要知道ABCF哪些是战争片,哪些是剧情片,我们只需要知道用户u1和u2按照item向量表示,他们的相似度比较高,那么我们可以把u2所喜欢的F这部影片推荐给u1。
根据数据源的不同推荐引擎可以分为三类
1、基于人口的统计学推荐(Demographic-based Recommendation)
2、基于内容的推荐(Content-based Recommendation)
3、基于协同过滤的推荐(Collaborative Filtering-based Recommendation)
基于内容的推荐:
根据物品或内容的元数据,发现物品或内容的相关性,然后基于用户以前的喜好记录推荐给用户相似的物品
基于内容推荐的一个典型的例子,电影推荐系统,首先我们需要对电影的元数据有一个建模,这里只简单的描述了一下电影的类型;然后通过电影的元数据发现电影间的相似度,因为类型都是“爱情,浪漫”电影 A 和 C 被认为是相似的电影(当然,只根据类型是不够的,要得到更好的推荐,我们还可以考虑电影的导演,演员等等);最后实现推荐,对于用户 A,他喜欢看电影 A,那么系统就可以给他推荐类似的电影 C。
(1)基于用户的协同过滤推荐(User-based Collaborative Filtering Recommendation)
基于用户的协同过滤推荐算法先使用统计技术寻找与目标用户有相同喜好的邻居,然后根据目标用户的邻居的喜好产生向目标用户的推荐。基本原理就是利用用户访问行为的相似性来互相推荐用户可能感兴趣的资源,
(2)基于项目的协同过滤推荐(Item-based Collaborative Filtering Recommendation)
根据所有用户对物品或者信息的评价,发现物品和物品之间的相似度,然后根据用户的历史偏好信息将类似的物品推荐给该用户,
(3)基于模型的协同过滤推荐(Model-based Collaborative Filtering Recommendation)
基模型的协同过滤推荐就是基于样本的用户喜好信息,训练一个推荐模型,然后根据实时的用户喜好的信息进行预测推荐。