展开全部
根据给出的条件,可以得到:
∠A = 40°+20° = 60°,∠B = 85°-40° = 45°
∠C = 180° - ∠A - ∠B = 75°
sinC = sin(A+B)
= sinAcosB + cosAsinB
= √3*√2/4 + √2/4
= √2/4 * (√3+1)
根据正弦定理,有:
AB/sinC = AC/sinB = BC/sinA
再根据比例的性质,有:
(AB+AC)/(sinC+sinB) = BC/sinA
(AB+AC-BC)/(sinC+sinB-sinA) = BC/sinA
所以,我们能够得到:
AB+AC-BC = BC/sinA * (sinC+sinB - sinA)
= 23.8km/sin60° * [√2/4 * (√3+1) + √2/2 - √3/2]
= 23.8km * [√2 * (√3 + 1)/2 + √2 - √3]/√3
≈22.3km
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询