这题都是三角函数的不定积分怎么求?
2个回答
展开全部
∫dx/sin2x+2sinx
=∫dx/2sinx(cosx+1)
=∫dx/8sin(x/2)cos(x/2){cox(x/2)}^2
=1/4∫1/sin(x/2)cos(x/2)dtan(x/2)
=1/4∫(cos(x/2)/sin(x/2)+sin(x/2)/cos(x/2)dtan(x/2)
=1/4∫1/tan(x/2)dtan(x/2)+1/4∫tan(x/2)dtan(x/2)
=1/4ln绝对值tan(x/2)+1/8{tan(x/2)}^2+C
=∫dx/2sinx(cosx+1)
=∫dx/8sin(x/2)cos(x/2){cox(x/2)}^2
=1/4∫1/sin(x/2)cos(x/2)dtan(x/2)
=1/4∫(cos(x/2)/sin(x/2)+sin(x/2)/cos(x/2)dtan(x/2)
=1/4∫1/tan(x/2)dtan(x/2)+1/4∫tan(x/2)dtan(x/2)
=1/4ln绝对值tan(x/2)+1/8{tan(x/2)}^2+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询