求解高数题,急
展开全部
∑:z=1-x^2-y^2 (x>0,y>0,z>0)
则x=√(1-y^2-z),y=√(1-x^2-z)
I=∫∫(∑) xdydz+ydzdx+2zdxdy
=∫∫(Dyoz) √(1-y^2-z)dydz+∫∫(Dzox) √(1-x^2-z)dzdx+∫∫(Dxoy) (1-x^2-y^2)dxdy
=∫(0,1)dy∫(0,1-y^2)√(1-y^2-z)dz+∫(0,1)dx∫(0,1-x^2)√(1-x^2-z)dz+∫(0,π/2)dθ∫(0,1)(1-r^2)rdr
=∫(0,1)dy*(-2/3)*(1-y^2-z)^(3/2)|(0,1-y^2)+∫(0,1)dx*(-2/3)*(1-x^2-z)|(0,1-x^2)+(π/2)*[(1/2)*r^2-(1/4)*r^4]|(0,1)
=(4/3)*∫(0,1) (1-t^2)^(3/2)dt+π/8
=3π/16+π/8
=5π/16
则x=√(1-y^2-z),y=√(1-x^2-z)
I=∫∫(∑) xdydz+ydzdx+2zdxdy
=∫∫(Dyoz) √(1-y^2-z)dydz+∫∫(Dzox) √(1-x^2-z)dzdx+∫∫(Dxoy) (1-x^2-y^2)dxdy
=∫(0,1)dy∫(0,1-y^2)√(1-y^2-z)dz+∫(0,1)dx∫(0,1-x^2)√(1-x^2-z)dz+∫(0,π/2)dθ∫(0,1)(1-r^2)rdr
=∫(0,1)dy*(-2/3)*(1-y^2-z)^(3/2)|(0,1-y^2)+∫(0,1)dx*(-2/3)*(1-x^2-z)|(0,1-x^2)+(π/2)*[(1/2)*r^2-(1/4)*r^4]|(0,1)
=(4/3)*∫(0,1) (1-t^2)^(3/2)dt+π/8
=3π/16+π/8
=5π/16
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |