求一元三次方程的解法。要求推广到一般式的步骤,最好手写,谢谢。
展开全部
一元三次方程ax³+bx²+cx+d=0
x³+bx²/a+cx/a+d/a=0
令y=x-b/(3a)代入可化为
y³+py+q=0
设ω1=(-1+√3i)/2,ω2=(-1-√3i)/2
则三个根分别为:
y1=³√{-q/2+√[(-q/2)²+(p/3)³]}+³√{-q/2-√[(-q/2)²+(p/3)³]}
y2=ω1³√{-q/2+√[(-q/2)²+(p/3)³]}+ω2³√{-q/2-√[(-q/2)²+(p/3)³]}
y3=ω2³√{-q/2+√[(-q/2)²+(p/3)³]}+ω1³√{-q/2-√[(-q/2)²+(p/3)³]}
x³+bx²/a+cx/a+d/a=0
令y=x-b/(3a)代入可化为
y³+py+q=0
设ω1=(-1+√3i)/2,ω2=(-1-√3i)/2
则三个根分别为:
y1=³√{-q/2+√[(-q/2)²+(p/3)³]}+³√{-q/2-√[(-q/2)²+(p/3)³]}
y2=ω1³√{-q/2+√[(-q/2)²+(p/3)³]}+ω2³√{-q/2-√[(-q/2)²+(p/3)³]}
y3=ω2³√{-q/2+√[(-q/2)²+(p/3)³]}+ω1³√{-q/2-√[(-q/2)²+(p/3)³]}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询