已知函数f(x)=4sinxcos(x-π/3)-√3
2个回答
展开全部
f(x)=4sinxcos(x-π/3)-√3
=2×2sinxcos(x-π/3)-√3
=2[sin(x+x-π/3)+sin(x-x+π/3)]-√3
=2sin(2x-π/3)+2sinπ/3-√3
=2sin(2x-π/3)
故函数的周期T=π,令2x-π/3=kπ,k属于Z,
故函数的零点为x=kπ/2+π/6,k属于Z
2x属于【π/24,3π/4】
则2x属于【π/12,3π/2】
则2x-π/3属于【-π/4,7π/6】
故函数最大值为y=2,最小值y=-根2.
=2×2sinxcos(x-π/3)-√3
=2[sin(x+x-π/3)+sin(x-x+π/3)]-√3
=2sin(2x-π/3)+2sinπ/3-√3
=2sin(2x-π/3)
故函数的周期T=π,令2x-π/3=kπ,k属于Z,
故函数的零点为x=kπ/2+π/6,k属于Z
2x属于【π/24,3π/4】
则2x属于【π/12,3π/2】
则2x-π/3属于【-π/4,7π/6】
故函数最大值为y=2,最小值y=-根2.
展开全部
f(x)=2sin^2(π/4-x)-√3cos2x
=1-cos(π/2-2x)-√3cos2x
=1-sin2x-√3cos2x
=1-2(1/2sin2x
√3/2cos2x)
=1-2(sin2xcosπ/3
sinπ/3cos2x)
=1-2sin(2x
π/3)
故最小正周期t=π
当2kπ
π/2≤2x
π/3≤2kπ
3π/2时,函数单调递减
即函数的单调递减区间为:kπ
π/12≤x≤kπ
7π/12
当0<x<π/2时
π/3<2x
π/3<4π/3
故当2x
π/3=π/2时
即x=π/12
f(x)min=f(π/12)=-1
=1-cos(π/2-2x)-√3cos2x
=1-sin2x-√3cos2x
=1-2(1/2sin2x
√3/2cos2x)
=1-2(sin2xcosπ/3
sinπ/3cos2x)
=1-2sin(2x
π/3)
故最小正周期t=π
当2kπ
π/2≤2x
π/3≤2kπ
3π/2时,函数单调递减
即函数的单调递减区间为:kπ
π/12≤x≤kπ
7π/12
当0<x<π/2时
π/3<2x
π/3<4π/3
故当2x
π/3=π/2时
即x=π/12
f(x)min=f(π/12)=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询