
求微分方程xy'+y=1 的通解
展开全部
解:x*dy/dx=1-y
若1-y=0,即y=1,y'=0,方程两边相等,所以
y=1是一个解
若y≠1,则dy/(1-y)=dx/x
积分得:-ln|1-y|=ln|x|+C1
所以|1-y|=e^(-C1-ln|x|)
1-y=±e^(-c1)*e^ln(1/|x|)
1-y=C/|x|
所以y=1-C/|x|
特殊地,当C=0时,y=1
综上所述,该方程的通解为y=1-C/|x|
若1-y=0,即y=1,y'=0,方程两边相等,所以
y=1是一个解
若y≠1,则dy/(1-y)=dx/x
积分得:-ln|1-y|=ln|x|+C1
所以|1-y|=e^(-C1-ln|x|)
1-y=±e^(-c1)*e^ln(1/|x|)
1-y=C/|x|
所以y=1-C/|x|
特殊地,当C=0时,y=1
综上所述,该方程的通解为y=1-C/|x|

2025-08-07 广告
广州赛恩科学仪器有限公司(原中大科仪)始创于2032年,是全球领先的精密测量仪器供应商和微弱信号检测方案提供商。公司以锁相放大器为核心产品,陆续推出光学斩波器、源表、功率放大器、电化学工作站、电流源等一系列产品。赛恩科仪推出的锁相放大器,覆...
点击进入详情页
本回答由赛恩科仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询