设3的m次平方+n能被10整除,试证明3的m+4次平方+n也能被10整除.
展开全部
证明:
3^n+m能被10整除
设商为k,显然k为整数,
则3^n+m=10k
3^n=10k-m,
从而
3^(n+4)+m
=3^n*3^4+m
=(10k-m)*81+m
=81*10k-81m+m
=81*10k-80m
=(81k-8m)*10
所以
3^(n+4)+m也能被10整除。
3^n+m能被10整除
设商为k,显然k为整数,
则3^n+m=10k
3^n=10k-m,
从而
3^(n+4)+m
=3^n*3^4+m
=(10k-m)*81+m
=81*10k-81m+m
=81*10k-80m
=(81k-8m)*10
所以
3^(n+4)+m也能被10整除。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
大雅新科技有限公司
2024-11-19 广告
2024-11-19 广告
这方面更多更全面的信息其实可以找下大雅新。深圳市大雅新科技有限公司从事KVM延长器,DVI延长器,USB延长器,键盘鼠标延长器,双绞线视频传输器,VGA视频双绞线传输器,VGA延长器,VGA视频延长器,DVI KVM 切换器等,优质供应商,...
点击进入详情页
本回答由大雅新科技有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询