解决几何问题的方法
研究中学几何问题的方法主要数形结合思想、化归思想、变换思想。
数形结合思想
在中学几何学习中,数形结合的思想具有重要的作用,教师在教学中运用数形结合思想,能够将几何图形用代数的形式表示,并利用代数方式解决几何问题。数形结合将几何图形与代数公式密切的联系在一起,利用代数语言将几何问题简化,使学生更容易解决问题,是几何教学中的核心思想方法。
例如,研究直线与圆位置关系,可以根据直线方程和圆的方程,找到圆的圆心坐标,通过求解圆心到直线的距离d与圆的半径r之间的大小,来确定直线与圆的位置关系。
化归思想
化归思想是数学中普遍运用的一种思想,在中学几何教学中,教师常运用这一思想,基本的运用方法就是将几何问题转化为代数问题,利用代数知识将问题解决后,再返回到几何中。或是在对空间曲面进行研究时,将复杂的空间几何图形转化为学生熟悉的平面曲线,便于学生理解和解决。
例如,研究直线与圆位置关系,可以将直线方程和圆的方程联立,转化成一元二次方程,通过判断一元二次方程根的个数,来确定直线与圆的位置关系。
变换思想
变换思想是能够将复杂问题简单化的一种思想方法,变换思想在运用时,一般仅改变数量关系形式和相关元素位置,问题的结构和性质没有变化。
在几何教学中,教师利用变换思想进行变换,实现二次曲线方程的化简,能够通过方程运算准确的将方程所表示的图形展现出来,在降低学生学习难度的同时,也为用计算机研究几何图形性质等提供了依据。