1π到10π的数值?
1π=3.14,2π=6.28,3π=9.42,4π=12.56,5π=15.7,6π=18.84,7π=21.98,8π=25.12,9π=28.26,10π=31.4。
11π=35.45,12π=37.68,13π=40.83,14π=43.96,15π=47.1,16π=50.24,17π=53.38。
18π=56.52,19π=59.66,20π=62.8,21π=65.94,22π=69.08,23π=72.22,24π=75.36。
25π=78.5,26π=81.64,27π=84.78,28π=87.92,29π=91.06,30π=94.2,31π=97.34。
32π=100.48,33π=103.62,34π=106.76,35π=109.9,36π=113.04,37π=116.18,38π=119.32,39π=122.46,40π=125.6。
来历:历史上的π首次出现于埃及。1858年,苏格兰一位古董商偶然发现了写在古埃及莎草纸(古埃及人广泛采用的书写介质)上的π的数值。
古代巴比伦人计算出π的数值为3。但是希腊人还想进一步计算出π的精确数值。
于是他们在一个圆内绘出一个多边形,这个多边形的边越多,其形状也就越接近于圆。
希腊人称这种计算方法叫“竭尽法”。事实上这也确实让不少数学家精疲力竭。
阿基米德的几何计算结果的寿命要长一些,他通过一个九十六边形估算出π的数值在3至3.17之间。
在以后的700年间,这个数值一直都是最精确的数值,没有人能够取得进一步的成就。
到了公元5世纪,中国数学和天文学家祖冲之和他的儿子在一个圆里绘出了有24576条边的多边形。
算出圆周率值在3.1415926和3.1415927之间,这样才将π的数值又向前推进了一步。
2024-10-13 广告
如图:
圆周率用希腊字母 π(读作pài)表示,是一个常数,是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。
相关如下:
在用π专指“圆周率”之前,希腊字母即已用于几何概念中:166。威廉·奥特雷德在1647年起在《数学之钥》(Clavis Mathematicae)就已经用π(对应p和d的希腊字母)来表示圆的周长及直径的比例。
威廉·琼斯在他1706年出版的《新数学导论》(A New Introduction to the Mathematics)中提到了π,是目前已知最早专门用希腊字母π表示圆周和其直径比例的人。这个希腊字母的第一次出现,是在书中讨论一个半径为1的圆时,提到“其圆周长的一半(π)”。
琼斯选用了π的原因可能是因为它是希腊文中“周边”一词“περιφέρεια”的第一个字。不过琼斯提到,他的那些有关π的算式是出自“真正聪明的约翰·梅钦先生”,因此人们推测在琼斯之前,约翰·梅钦就已经开始使用此希腊字母表示圆周率:166。
3.14、6.28、9.42、12.56、15.7、18.84、21.98、25.12、28.26、31.4。
1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。
相关信息:
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。圆周率用希腊字母π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。
它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。2019年3月14日,谷歌宣布圆周率现已到小数点后31.4万亿位。
其他:11π=35.45,12π=37.68,13π=40.83,14π=43.96,15π=47.1,16π=50.24,17π=53.38,18π=56.52,19π=59.66,20π=62.8
广告 您可能关注的内容 |