求几条参数方程题目(要分别用参数方法和一般方程方法求解)

希望付上详细分析(如哪种方法更简便以及原因)... 希望付上详细分析(如哪种方法更简便以及原因) 展开
 我来答
亢嫚力平灵
2020-01-13 · TA获得超过3842个赞
知道小有建树答主
回答量:3120
采纳率:34%
帮助的人:193万
展开全部
在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t),y=φ(t),(1)且对于t的每一个允许值,由方程组(1)所确定的点m(x,y)都在这条曲线上,那么方程组(1)称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数。类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)。(2)
圆的参数方程
x=a+r
cosθ
y=b+r
sinθ
(a,b)为圆心坐标
r为圆半径
θ为参数
椭圆的参数方程
x=a
cosθ
y=b
sinθ
a为长半轴

b为短半轴长
θ为参数
双曲线的参数方程
x=a
secθ
(正割)
y=b
tanθ
a为实半轴长
b为虚半轴长
θ为参数
抛物线的参数方程
x=2pt^2
y=2pt
p表示焦点到准线的距离
t为参数
直线的参数方程
x=x'+tcosa
y=y'+tsina
,
x',
y'和a表示直线经过(x',y'),且倾斜角为a,t为参数.
在柯西中值定理的证明中,也运用到了参数方程。
柯西中值定理
如果函数f(x)及F(x)满足:
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
(3)对任一x∈(a,b),F'(x)≠0,
那么在(a,b)内至少有一点ζ,使等式
[f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。
柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式